Double Attention Based on Graph Attention Network for Image Multi-Label Classification

计算机科学 多标签分类 杠杆(统计) 人工智能 帕斯卡(单位) 模式识别(心理学) 嵌入 相关性 概化理论 图形 机器学习 分类器(UML) 特征(语言学) 数据挖掘 理论计算机科学 数学 统计 几何学 哲学 语言学 程序设计语言
作者
Wei Zhou,Zhiwu Xia,Peng Dou,Tao Su,Haifeng Hu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1): 1-23 被引量:27
标识
DOI:10.1145/3519030
摘要

The task of image multi-label classification is to accurately recognize multiple objects in an input image. Most of the recent works need to leverage the label co-occurrence matrix counted from training data to construct the graph structure, which are inflexible and may degrade model generalizability. In addition, these methods fail to capture the semantic correlation between the channel feature maps to further improve model performance. To address these issues, we propose DA-GAT (a D ouble A ttention framework based on the G raph A ttention ne T work) to effectively learn the correlation between labels from training data. First, we devise a new channel attention mechanism to enhance the semantic correlation between channel feature maps, so as to implicitly capture the correlation between labels. Second, we propose a new label attention mechanism to avoid the adverse impact of a manually constructed label co-occurrence matrix. It only needs to leverage the label embedding as the input of network, then automatically constructs the label relation matrix to explicitly establish the correlation between labels. Finally, we effectively fuse the output of these two attention mechanisms to further improve model performance. Extensive experiments are conducted on three public multi-label classification benchmarks. Our DA-GAT model achieves mean average precision of 87.1%, 96.6%, and 64.3% on MS-COCO 2014, PASCAL VOC 2007, and NUS-WIDE, respectively, and obviously outperforms other existing state-of-the-art methods. In addition, visual analysis experiments demonstrate that each attention mechanism can capture the correlation between labels well and significantly promote the model performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
儒雅祥发布了新的文献求助10
1秒前
gwentea发布了新的文献求助10
2秒前
师大六神发布了新的文献求助10
2秒前
十个勤天发布了新的文献求助10
2秒前
Barkdog完成签到,获得积分10
3秒前
JSM完成签到,获得积分10
4秒前
4秒前
靓丽的魔镜完成签到,获得积分20
5秒前
5秒前
宁小童完成签到,获得积分10
6秒前
gwentea完成签到,获得积分10
6秒前
邓佳鑫Alan应助潇洒的豪采纳,获得10
6秒前
所所应助潇洒的豪采纳,获得10
6秒前
6秒前
suliang完成签到,获得积分10
7秒前
达布妞完成签到,获得积分10
7秒前
7秒前
Akim应助冯小研采纳,获得10
7秒前
比奇堡发布了新的文献求助10
7秒前
ding应助洁净的醉波采纳,获得10
7秒前
7秒前
8秒前
Hello应助奋斗灵凡采纳,获得10
8秒前
Zhang_Yakun发布了新的文献求助30
8秒前
寻道图强应助LSC采纳,获得30
9秒前
香蕉觅云应助jiangqingquan采纳,获得10
10秒前
10秒前
顺心飞扬完成签到,获得积分10
11秒前
lqm完成签到,获得积分10
12秒前
12秒前
Tal发布了新的文献求助10
12秒前
12秒前
12秒前
儒雅祥完成签到,获得积分10
13秒前
深情安青应助风清扬采纳,获得10
14秒前
15秒前
阿晖完成签到,获得积分10
15秒前
16秒前
学术渣滓完成签到,获得积分10
17秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501262
求助须知:如何正确求助?哪些是违规求助? 4597591
关于积分的说明 14459908
捐赠科研通 4531076
什么是DOI,文献DOI怎么找? 2483103
邀请新用户注册赠送积分活动 1466734
关于科研通互助平台的介绍 1439367