Double Attention Based on Graph Attention Network for Image Multi-Label Classification

计算机科学 多标签分类 杠杆(统计) 人工智能 帕斯卡(单位) 模式识别(心理学) 嵌入 相关性 概化理论 图形 机器学习 分类器(UML) 特征(语言学) 数据挖掘 理论计算机科学 数学 统计 几何学 哲学 语言学 程序设计语言
作者
Wei Zhou,Zhiwu Xia,Peng Dou,Tao Su,Haifeng Hu
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1): 1-23 被引量:27
标识
DOI:10.1145/3519030
摘要

The task of image multi-label classification is to accurately recognize multiple objects in an input image. Most of the recent works need to leverage the label co-occurrence matrix counted from training data to construct the graph structure, which are inflexible and may degrade model generalizability. In addition, these methods fail to capture the semantic correlation between the channel feature maps to further improve model performance. To address these issues, we propose DA-GAT (a D ouble A ttention framework based on the G raph A ttention ne T work) to effectively learn the correlation between labels from training data. First, we devise a new channel attention mechanism to enhance the semantic correlation between channel feature maps, so as to implicitly capture the correlation between labels. Second, we propose a new label attention mechanism to avoid the adverse impact of a manually constructed label co-occurrence matrix. It only needs to leverage the label embedding as the input of network, then automatically constructs the label relation matrix to explicitly establish the correlation between labels. Finally, we effectively fuse the output of these two attention mechanisms to further improve model performance. Extensive experiments are conducted on three public multi-label classification benchmarks. Our DA-GAT model achieves mean average precision of 87.1%, 96.6%, and 64.3% on MS-COCO 2014, PASCAL VOC 2007, and NUS-WIDE, respectively, and obviously outperforms other existing state-of-the-art methods. In addition, visual analysis experiments demonstrate that each attention mechanism can capture the correlation between labels well and significantly promote the model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
深情安青应助瓜瓜乐采纳,获得10
刚刚
卡卡可可完成签到,获得积分10
1秒前
王大包子完成签到,获得积分20
1秒前
今后应助candybear采纳,获得10
1秒前
1秒前
1秒前
2秒前
霍小美发布了新的文献求助10
2秒前
Owen应助白日梦想家采纳,获得10
2秒前
puhui完成签到,获得积分10
2秒前
2秒前
石会发发布了新的文献求助10
2秒前
pluto应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
ywq应助ganchao1776采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
ED应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
王大包子发布了新的文献求助10
3秒前
01发布了新的文献求助10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
4秒前
fxy发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
ED应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Liu完成签到,获得积分10
4秒前
fd163c应助耍酷代柔采纳,获得10
5秒前
Alibizia发布了新的文献求助10
5秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092