Evidence for machine learning guided early prediction of acute outcomes in the treatment of depressed children and adolescents with antidepressants

氟西汀 安慰剂 度洛西汀 心理学 重性抑郁障碍 易怒 萧条(经济学) 雷波西汀 精神科 临床心理学 抗抑郁药 再摄取抑制剂 焦虑 内科学 医学 心情 血清素 替代医学 受体 病理 经济 宏观经济学
作者
Arjun P. Athreya,Jennifer L. Vande Voort,Julia Shekunov,Sandra Rackley,Jarrod M. Leffler,Alastair J. McKean,Magdalena Romanowicz,Betsy D. Kennard,Graham J. Emslie,Taryn L. Mayes,Madhukar H. Trivedi,Liewei Wang,Richard M. Weinshilboum,William V. Bobo,Paul E. Croarkin
出处
期刊:Journal of Child Psychology and Psychiatry [Wiley]
卷期号:63 (11): 1347-1358 被引量:3
标识
DOI:10.1111/jcpp.13580
摘要

Background The treatment of depression in children and adolescents is a substantial public health challenge. This study examined artificial intelligence tools for the prediction of early outcomes in depressed children and adolescents treated with fluoxetine, duloxetine, or placebo. Methods The study samples included training datasets ( N = 271) from patients with major depressive disorder (MDD) treated with fluoxetine and testing datasets from patients with MDD treated with duloxetine ( N = 255) or placebo ( N = 265). Treatment trajectories were generated using probabilistic graphical models (PGMs). Unsupervised machine learning identified specific depressive symptom profiles and related thresholds of improvement during acute treatment. Results Variation in six depressive symptoms (difficulty having fun, social withdrawal, excessive fatigue, irritability, low self‐esteem, and depressed feelings) assessed with the Children’s Depression Rating Scale‐Revised at 4–6 weeks predicted treatment outcomes with fluoxetine at 10–12 weeks with an average accuracy of 73% in the training dataset. The same six symptoms predicted 10–12 week outcomes at 4–6 weeks in (a) duloxetine testing datasets with an average accuracy of 76% and (b) placebo‐treated patients with accuracies of 67%. In placebo‐treated patients, the accuracies of predicting response and remission were similar to antidepressants. Accuracies for predicting nonresponse to placebo treatment were significantly lower than antidepressants. Conclusions PGMs provided clinically meaningful predictions in samples of depressed children and adolescents treated with fluoxetine or duloxetine. Future work should augment PGMs with biological data for refined predictions to guide the selection of pharmacological and psychotherapeutic treatment in children and adolescents with depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中亦玉发布了新的文献求助10
2秒前
10秒前
ringo完成签到,获得积分10
12秒前
12秒前
今后应助外向语山采纳,获得10
13秒前
寄托完成签到 ,获得积分10
13秒前
jimmy完成签到,获得积分10
13秒前
喻鞅完成签到,获得积分10
13秒前
HYY完成签到,获得积分10
14秒前
16秒前
sandy完成签到,获得积分10
16秒前
华华华完成签到,获得积分10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
18秒前
仿真小学生完成签到,获得积分10
20秒前
xxx发布了新的文献求助10
22秒前
zhao发布了新的文献求助10
23秒前
Akim应助淋湿巴黎采纳,获得10
25秒前
FashionBoy应助过时的三颜采纳,获得10
28秒前
29秒前
复杂的浩阑完成签到,获得积分20
30秒前
外向语山发布了新的文献求助10
32秒前
小周发布了新的文献求助10
32秒前
orbitvox完成签到,获得积分10
34秒前
xyyyy发布了新的文献求助10
41秒前
45秒前
xie完成签到 ,获得积分10
47秒前
48秒前
48秒前
Summer完成签到,获得积分10
48秒前
sunny完成签到 ,获得积分10
49秒前
点点白帆发布了新的文献求助10
50秒前
迷人荷花发布了新的文献求助10
52秒前
LabRat完成签到 ,获得积分10
53秒前
mr_zhao发布了新的文献求助10
54秒前
冷艳的小懒虫完成签到 ,获得积分10
56秒前
科研通AI2S应助你好采纳,获得10
1分钟前
情怀应助迷人荷花采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Eddy current canonical problems (with applications to nondestructive evaluation) 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372078
求助须知:如何正确求助?哪些是违规求助? 2989982
关于积分的说明 8738132
捐赠科研通 2673333
什么是DOI,文献DOI怎么找? 1464422
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668893