材料科学
电介质
无定形固体
放松(心理学)
脉冲激光沉积
激光器
高-κ电介质
极化(电化学)
分析化学(期刊)
薄膜
光学
光电子学
凝聚态物理
分子物理学
纳米技术
结晶学
社会心理学
物理
色谱法
物理化学
化学
心理学
作者
Partha Sarathi Padhi,Sanjay Kumar,Himanshu Srivastava,R. S. Ajimsha,Arvind K. Srivastava,Pankaj Misra
标识
DOI:10.1021/acsami.1c25028
摘要
Multilayer nanolaminates (NLs) of alternate ultrathin sublayers of Al2O3 and TiO2 (ATA) with the thickness ranging ∼2 to 0.5 nm were fabricated by optimized pulsed laser deposition (PLD). Maxwell-Wagner (M-W) relaxation-induced interfacial polarization was realized and engineered by precisely controlling the sublayer thicknesses and the number of interfaces. X-ray reflectivity and cross-sectional transmission electron microscopy measurements of ATA NLs revealed an artificial periodicity with well-defined uniformly thick amorphous sublayers with chemically and physically distinct interfaces down to a sublayer thickness of ∼0.8 nm. The dielectric constants and loss of ATA NLs were found to increase from ∼60 to 670 and decrease from ∼0.9 to 0.16, respectively, as sublayer thicknesses reduced from ∼2 to 0.8 nm. However, for a sublayer thickness below 0.8 nm, the trend was reversed. Furthermore, temperature-dependent impedance spectroscopy studies revealed two distinct thermally activated relaxation processes, corresponding to TiO2 and Al2O3 sublayers, corroborating the M-W relaxation. The conductivity contrast between the sublayers of ATA NLs enhanced with reducing sublayer thickness and plateaued at a sublayer thickness of ∼0.8 nm, resulting in dominant M-W interfacial polarization and a high cut-off frequency of ∼50 kHz. These results demonstrate that ATA NLs grown by PLD may find application as potential high-k materials for next-generation nanoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI