Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next

人工神经网络 搭配(遥感) 计算机科学 偏微分方程 功能(生物学) 航程(航空) 有限元法 人工智能 数学 机器学习 物理 数学分析 工程类 热力学 航空航天工程 生物 进化生物学
作者
Salvatore Cuomo,Vincenzo Schiano di Cola,Fabio Giampaolo,Gianluigi Rozza,Maziar Raissi,Francesco Piccialli
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2201.05624
摘要

Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations, like Partial Differential Equations (PDE), as a component of the neural network itself. PINNs are nowadays used to solve PDEs, fractional equations, integral-differential equations, and stochastic PDEs. This novel methodology has arisen as a multi-task learning framework in which a NN must fit observed data while reducing a PDE residual. This article provides a comprehensive review of the literature on PINNs: while the primary goal of the study was to characterize these networks and their related advantages and disadvantages. The review also attempts to incorporate publications on a broader range of collocation-based physics informed neural networks, which stars form the vanilla PINN, as well as many other variants, such as physics-constrained neural networks (PCNN), variational hp-VPINN, and conservative PINN (CPINN). The study indicates that most research has focused on customizing the PINN through different activation functions, gradient optimization techniques, neural network structures, and loss function structures. Despite the wide range of applications for which PINNs have been used, by demonstrating their ability to be more feasible in some contexts than classical numerical techniques like Finite Element Method (FEM), advancements are still possible, most notably theoretical issues that remain unresolved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zfzf0422采纳,获得10
2秒前
Wendy1204发布了新的文献求助10
3秒前
3秒前
lydy1993完成签到,获得积分10
4秒前
5秒前
滴滴哒哒完成签到 ,获得积分10
5秒前
SciGPT应助波波玛奇朵采纳,获得10
7秒前
戏言121完成签到,获得积分10
7秒前
迷人的映雁完成签到,获得积分10
8秒前
8秒前
美丽的之双完成签到,获得积分10
9秒前
阿会完成签到,获得积分10
9秒前
wqm完成签到,获得积分10
10秒前
戏言121发布了新的文献求助10
11秒前
11秒前
12秒前
优雅的流沙完成签到 ,获得积分10
13秒前
猫的海完成签到,获得积分10
13秒前
13秒前
Eason Liu完成签到,获得积分0
14秒前
Wendy1204完成签到,获得积分20
14秒前
Hello应助654采纳,获得10
14秒前
咩咩羊完成签到,获得积分10
14秒前
18秒前
lianqing完成签到,获得积分10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
19秒前
RC_Wang应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
hh应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得30
19秒前
19秒前
Leif应助科研通管家采纳,获得20
19秒前
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824