Graph neural network predictions of metal organic framework CO2 adsorption properties

吸附 人工神经网络 金属有机骨架 计算机科学 限制 材料科学 图形 热力学 算法 人工智能 物理化学 化学 物理 理论计算机科学 机械工程 工程类
作者
Kamal Choudhary,Taner Yildirim,Daniel W. Siderius,A. Gilad Kusne,Austin McDannald,Diana L. Ortiz‐Montalvo
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:210: 111388-111388 被引量:41
标识
DOI:10.1016/j.commatsci.2022.111388
摘要

The increasing CO2 level is a critical concern and suitable materials are needed to capture such gases from the environment. While experimental and conventional computational methods are useful in finding such materials, they are usually slow and there is a need to expedite such processes. We use Atomistic Line Graph Neural Network (ALIGNN) method to predict CO2 adsorption in metal organic frameworks (MOF), which are known for their high functional tunability. We train ALIGNN models for hypothetical MOF (hMOF) database with 137953 MOFs with grand canonical Monte Carlo (GCMC) based CO2 adsorption isotherms. We develop high accuracy and fast models for pre-screening applications. We apply the trained model on CoREMOF database and computationally rank them for experimental synthesis. In addition to the CO2 adsorption isotherm, we also train models for electronic bandgaps, surface area, void fraction, lowest cavity diameter, and pore limiting diameter, and illustrate the strength and limitation of such graph neural network models. For a few candidate MOFs we carry out GCMC calculations to evaluate the deep-learning (DL) predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lqkcqmu发布了新的文献求助10
1秒前
1秒前
共享精神应助runer采纳,获得10
1秒前
1秒前
dida完成签到,获得积分10
2秒前
2秒前
gaoyuxuan完成签到,获得积分10
2秒前
3秒前
Robe发布了新的文献求助30
3秒前
spy完成签到,获得积分10
3秒前
4秒前
4秒前
mysilicon应助黄花采纳,获得10
4秒前
碧蓝莫言给碧蓝莫言的求助进行了留言
4秒前
4秒前
4秒前
5秒前
5秒前
lonf完成签到,获得积分10
5秒前
yn完成签到 ,获得积分10
5秒前
6秒前
北欧海盗发布了新的文献求助10
6秒前
spy发布了新的文献求助10
6秒前
布布完成签到,获得积分10
6秒前
7秒前
8秒前
Mannone发布了新的文献求助10
8秒前
ZOEzoe发布了新的文献求助30
8秒前
9秒前
Jasper应助cannon8采纳,获得50
9秒前
9秒前
lily关注了科研通微信公众号
9秒前
大力的忆霜完成签到 ,获得积分10
9秒前
阳光海云发布了新的文献求助30
10秒前
10秒前
细腻的书雁完成签到,获得积分10
10秒前
吴家辉发布了新的文献求助10
11秒前
hui发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600