Exploring the potential role of environmental and multi-source satellite data in crop yield prediction across Northeast China

产量(工程) 环境科学 植被(病理学) 卫星 作物产量 归一化差异植被指数 线性回归 生长季节 预测建模 粮食安全 回归分析 农业 遥感 大气科学 气候学 统计 气候变化 数学 地理 农学 生态学 病理 航空航天工程 工程类 考古 冶金 材料科学 地质学 生物 医学
作者
Zhenwang Li,Lei Ding,Dawei Xu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:815: 152880-152880 被引量:51
标识
DOI:10.1016/j.scitotenv.2021.152880
摘要

Developing an accurate crop yield predicting system at a large scale is of paramount importance for agricultural resource management and global food security. Earth observation provides a unique source of information to monitor crops from a diversity of spectral ranges. However, the integrated use of these data and their values in crop yield prediction is still understudied. Here we proposed the combination of environmental data (climate, soil, geography, and topography) with multiple satellite data (optical-based vegetation indices, solar-induced fluorescence (SIF), land surface temperature (LST), and microwave vegetation optical depth (VOD)) into the framework to estimate crop yield for maize, rice, and soybean in northeast China, and their unique value and relative influence on yield prediction was assessed. Two linear regression methods, three machine learning (ML) methods, and one ML ensemble model were adopted to build yield prediction models. Results showed that the individual ML methods outperformed the linear regression methods, the ML ensemble model further improved the single ML models. Moreover, models with more inputs achieved better performance, the combination of satellite data with environmental data, which explained 72%, 69%, and 57% of maize, rice, and soybean yield variability, respectively, demonstrated higher yield prediction performance than individual inputs. While satellite data contributed to crop yield prediction mainly at the early-peak of the growing season, climate data offered extra information mainly at the peak-late season. We also found that the combined use of EVI, LST and SIF has improved the model accuracy compared to the benchmark EVI model. However, the optical-based vegetation indices shared similar information and did not provide much extra information beyond EVI. The within-season yield forecasting showed that crop yields can be satisfactorily forecasted at two to three months prior to harvest. Geography, topography, VOD, EVI, soil hydraulic and nutrient parameters are more important for crop yield prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
3秒前
yyy完成签到,获得积分10
3秒前
3秒前
3秒前
个木完成签到,获得积分20
5秒前
怕孤独的鹭洋完成签到,获得积分10
6秒前
sb发布了新的文献求助10
6秒前
穆振家完成签到,获得积分10
6秒前
6秒前
6秒前
Zzz完成签到,获得积分10
7秒前
DIG发布了新的文献求助10
7秒前
7秒前
huohuo发布了新的文献求助10
8秒前
8秒前
有点小卑鄙完成签到,获得积分10
8秒前
8秒前
个木发布了新的文献求助10
8秒前
蔺半山完成签到 ,获得积分10
9秒前
9秒前
许益秀发布了新的文献求助10
10秒前
10秒前
猪猪hero应助靓丽雅蕊采纳,获得10
10秒前
10秒前
Glitter发布了新的文献求助10
10秒前
NekoAbismo发布了新的文献求助10
11秒前
王雯雯完成签到,获得积分20
11秒前
深情安青应助敬老院N号采纳,获得10
11秒前
科研通AI2S应助敬老院N号采纳,获得10
11秒前
科研通AI2S应助敬老院N号采纳,获得10
11秒前
大模型应助大力的映梦采纳,获得10
12秒前
12秒前
cccJF完成签到,获得积分10
12秒前
13秒前
chuyinweilai发布了新的文献求助10
13秒前
yaya完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748398
求助须知:如何正确求助?哪些是违规求助? 3291329
关于积分的说明 10072748
捐赠科研通 3006983
什么是DOI,文献DOI怎么找? 1651482
邀请新用户注册赠送积分活动 786390
科研通“疑难数据库(出版商)”最低求助积分说明 751676