Intention-Aware Vehicle Trajectory Prediction Based on Spatial-Temporal Dynamic Attention Network for Internet of Vehicles

时间戳 计算机科学 弹道 人工智能 特征(语言学) 钥匙(锁) 数据挖掘 互联网 机器学习 实时计算 计算机安全 语言学 哲学 物理 天文 万维网
作者
Xiaobo Chen,Huanjia Zhang,Feng Zhao,Yu Hu,Chenkai Tan,Jian Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19471-19483 被引量:73
标识
DOI:10.1109/tits.2022.3170551
摘要

Vehicle trajectory prediction is a keystone for the application of the internet of vehicles (IoV). With the help of deep learning and big data, it is possible to understand the between-vehicle interaction pattern hidden in the complex traffic environment. In this paper, we propose a novel spatial-temporal dynamic attention network for vehicle trajectory prediction, which can comprehensively capture temporal and social patterns in a hierarchical manner. The social relation between vehicles is captured at each timestamp and thus retains the dynamic variation of interaction. The temporal correlation in terms of individual motion state as well as social interaction is captured by different sequential models. Furthermore, a driving intention-specific feature fusion mechanism is proposed such that the extracted temporal and social features can be integrated adaptively for the maneuver-based multi-modal trajectory prediction. Experimental results on two real-world datasets show that compared with the state-of-the-art algorithms, our proposal achieves comparable prediction performance for short-term prediction, however, works much better for long-term prediction. Additionally, various ablation analysis is provided to evaluate the effectiveness of our proposed network components. The code will be available at https://xbchen82.github.io/resource/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_5Y9775发布了新的文献求助10
刚刚
309175700@qq.com完成签到,获得积分10
1秒前
ZJU完成签到,获得积分10
2秒前
2秒前
3秒前
快乐友灵完成签到,获得积分20
3秒前
光亮雪卉发布了新的文献求助30
4秒前
6秒前
Jenny完成签到,获得积分10
7秒前
铲子发布了新的文献求助10
7秒前
7秒前
7秒前
猫大熊完成签到,获得积分10
8秒前
9秒前
长安修士李长鸿完成签到,获得积分20
10秒前
科小白发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
浅尝离白应助caq采纳,获得30
13秒前
14秒前
隐形曼青应助光亮雪卉采纳,获得10
14秒前
勤恳发布了新的文献求助10
14秒前
15秒前
木子发布了新的文献求助10
15秒前
sxd完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
JamesPei应助葡萄成熟采纳,获得10
17秒前
vv发布了新的文献求助10
18秒前
Asuka完成签到,获得积分10
19秒前
19秒前
。。。完成签到,获得积分10
19秒前
Jasper应助爆辣花甲粉采纳,获得10
20秒前
21秒前
expuery发布了新的文献求助10
21秒前
22秒前
Leon完成签到,获得积分10
22秒前
22秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264819
求助须知:如何正确求助?哪些是违规求助? 2904784
关于积分的说明 8331584
捐赠科研通 2575093
什么是DOI,文献DOI怎么找? 1399658
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296