Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors

古细菌 电子受体 产甲烷 甲烷厌氧氧化 化学 无氧呼吸 电子转移 环境化学 硝酸盐 电子传输链 甲烷 细菌 光化学 生态学 生物 生物化学 遗传学 基因
作者
Martyna Głodowska,Cornelia U. Welte,Julia M. Kurth
出处
期刊:Advances in Microbial Physiology 卷期号:: 157-201 被引量:13
标识
DOI:10.1016/bs.ampbs.2022.01.003
摘要

Methane (CH4) is a potent greenhouse gas significantly contributing to the climate warming we are currently facing. Microorganisms play an important role in the global CH4 cycle that is controlled by the balance between anaerobic production via methanogenesis and CH4 removal via methanotrophic oxidation. Research in recent decades advanced our understanding of CH4 oxidation, which until 1976 was believed to be a strictly aerobic process. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is now known to be an important sink of CH4 in marine ecosystems. Furthermore, in 2006 it was discovered that anaerobic CH4 oxidation can also be coupled to nitrate reduction (N-DAMO), demonstrating that AOM may be much more versatile than previously thought and linked to other electron acceptors. In consequence, an increasing number of studies in recent years showed or suggested that alternative electron acceptors can be used in the AOM process including FeIII, MnIV, AsV, CrVI, SeVI, SbV, VV, and BrV. In addition, humic substances as well as biochar and perchlorate (ClO4-) were suggested to mediate AOM. Anaerobic methanotrophic archaea, the so-called ANME archaea, are key players in the AOM process, yet we are still lacking deeper understanding of their metabolism, electron acceptor preferences and their interaction with other microbial community members. It is still not clear whether ANME archaea can oxidize CH4 and reduce metallic electron acceptors independently or via electron transfer to syntrophic partners, interspecies electron transfer, nanowires or conductive pili. Therefore, the aim of this review is to summarize and discuss the current state of knowledge about ANME archaea, focusing on their physiology, metabolic flexibility and potential to use various electron acceptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jake发布了新的文献求助10
刚刚
1秒前
1秒前
研友_LmgOaZ发布了新的文献求助10
1秒前
maonaiqian发布了新的文献求助10
1秒前
溪水发布了新的文献求助10
2秒前
NIUBEN发布了新的文献求助20
2秒前
sfzz完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
greatchelsea完成签到,获得积分10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
吴彦祖应助科研通管家采纳,获得20
4秒前
思源应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
清风完成签到 ,获得积分10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
WIFI应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
香蕉觅云应助羊羊羊采纳,获得10
4秒前
彩色尔丝发布了新的文献求助10
4秒前
隐形曼青应助yin采纳,获得10
5秒前
1117完成签到 ,获得积分10
6秒前
9秒前
无敌暴龙战士完成签到,获得积分20
9秒前
9秒前
健忘的汲发布了新的文献求助10
10秒前
11秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
A Chronicle of Small Beer: The Memoirs of Nan Green 1000
From Rural China to the Ivy League: Reminiscences of Transformations in Modern Chinese History 900
Migration and Wellbeing: Towards a More Inclusive World 900
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
The Making of Détente: Eastern Europe and Western Europe in the Cold War, 1965-75 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2911640
求助须知:如何正确求助?哪些是违规求助? 2546862
关于积分的说明 6892826
捐赠科研通 2211796
什么是DOI,文献DOI怎么找? 1175299
版权声明 588140
科研通“疑难数据库(出版商)”最低求助积分说明 575729