Amorphous Boron Nitride Memristive Device for High-Density Memory and Neuromorphic Computing Applications

材料科学 神经形态工程学 电阻随机存取存储器 记忆电阻器 光电子学 氮化硼 无定形固体 纳米技术 纳米电子学 非易失性存储器 纳米材料 电压 电子工程 电气工程 计算机科学 人工神经网络 机器学习 工程类 有机化学 化学
作者
Atul C. Khot,Tukaram D. Dongale,Kiran A. Nirmal,Ji Hoon Sung,Ho Jin Lee,Revannath Dnyandeo Nikam,Tae Geun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (8): 10546-10557 被引量:49
标识
DOI:10.1021/acsami.1c23268
摘要

Although two-dimensional (2D) nanomaterials are promising candidates for use in memory and synaptic devices owing to their unique physical, chemical, and electrical properties, the process compatibility, synthetic reliability, and cost-effectiveness of 2D materials must be enhanced. In this context, amorphous boron nitride (a-BN) has emerged as a potential material for future 2D nanoelectronics. Therefore, we explored the use of a-BN for multilevel resistive switching (MRS) and synaptic learning applications by fabricating a complementary metal-oxide-semiconductor (CMOS)-compatible Ag/a-BN/Pt memory device. The redox-active Ag and boron vacancies enhance the mixed electrochemical metallization and valence change conduction mechanism. The synthesized a-BN switching layer was characterized using several analyses. The fabricated memory devices exhibited bipolar resistive switching with low set and reset voltages (+0.8 and -2 V, respectively) and a small operating voltage distribution. In addition, the switching voltages of the device were modeled using a time-series analysis, for which the Holt's exponential smoothing technique provided good modeling and prediction results. According to the analytical calculations, the fabricated Ag/a-BN/Pt device was found to be memristive, and its MRS ability was investigated by varying the compliance current. The multilevel states demonstrated a uniform resistance distribution with a high endurance of up to 104 direct current (DC) cycles and memory retention characteristics of over 106 s. Conductive atomic force microscopy was performed to clarify the resistive switching mechanism of the device, and the likely mixed electrochemical metallization and valence change mechanisms involved therein were discussed based on experimental results. The Ag/a-BN/Pt memristive devices mimicked potentiation/depression and spike-timing-dependent plasticity-based Hebbian-learning rules with a high pattern accuracy (90.8%) when implemented in neural network simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橘发布了新的文献求助10
1秒前
华仔应助林lin采纳,获得10
1秒前
viper3发布了新的文献求助10
2秒前
陈陈完成签到 ,获得积分10
3秒前
李健应助ZY采纳,获得10
3秒前
zoey发布了新的文献求助10
3秒前
小马甲应助LHYX采纳,获得10
3秒前
bkagyin应助11采纳,获得10
4秒前
852应助有魅力的电脑采纳,获得10
5秒前
5秒前
5秒前
卡普空的锋刃完成签到,获得积分10
6秒前
Huttu发布了新的文献求助10
7秒前
桐桐应助曦月采纳,获得10
8秒前
蔡小葵发布了新的文献求助10
8秒前
yangjiali完成签到 ,获得积分10
8秒前
8秒前
SYLH应助llx采纳,获得10
9秒前
壮观以松发布了新的文献求助10
9秒前
爬不起来发布了新的文献求助10
10秒前
田田田chong完成签到,获得积分10
10秒前
沙脑完成签到 ,获得积分10
10秒前
Lucas应助ahxb采纳,获得10
11秒前
bkagyin应助经费又被砍了采纳,获得10
12秒前
wu完成签到,获得积分10
12秒前
12秒前
万能图书馆应助Epiphany采纳,获得10
13秒前
14秒前
14秒前
11发布了新的文献求助10
14秒前
15秒前
sx完成签到,获得积分10
15秒前
16秒前
16秒前
TheDay发布了新的文献求助10
17秒前
mmmmm发布了新的文献求助10
17秒前
17秒前
上官若男应助李盈辉采纳,获得10
17秒前
科研通AI5应助沙脑采纳,获得10
19秒前
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475201
求助须知:如何正确求助?哪些是违规求助? 3067198
关于积分的说明 9103105
捐赠科研通 2758595
什么是DOI,文献DOI怎么找? 1513687
邀请新用户注册赠送积分活动 699775
科研通“疑难数据库(出版商)”最低求助积分说明 699119