列线图
医学
无线电技术
逻辑回归
曲线下面积
放射科
接收机工作特性
超声波
核医学
人口
腮腺
内科学
病理
环境卫生
作者
Qunying Li,Tao Jiang,Chao Zhang,Ying Zhang,Zhigang Huang,Hang Zhou,Pintong Huang
标识
DOI:10.1016/j.canlet.2021.12.015
摘要
Although conventional ultrasound (CUS) allows for clear detection of parotid gland lesions (PGLs), it fails to accurately provide benign-malignant differentiation due to overlapping morphological features. Radiomics is capable of processing large-quantity volume of data hidden in CUS image undiscovered by naked eyes. The aim was to explore the potential of CUS-based radiomics score (Rad-score) in distinguishing benign (BPGLs) and malignant PGLs (MPGLs). A consecutive of 281 PGLs (197 in training set and 84 in test set) with definite pathological confirmation was retrospectively enrolled. 1465 radiomics features were extracted from CUS images and Rad-score was constructed by using Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Different nomogram models, including clinic-radiomics (Clin + Rad-score), CUS-clinic (CUS + Clin) and combined CUS-clinic-radiomics (CUS + Clin + Rad-score), were built using logistic regression. The diagnostic performance of different models were calculated and compared by area under receiver operating curve (AUC) and corresponding sensitivity and specificity. Finally, 26 radiomics features were independent signatures for predicting MPGLs, with MPGLs having higher Rad-scores in both cohorts (both P < 0.05). In the test population, CUS + Clin + Rad-score obtained an excellent diagnostic result, with significantly higher AUC value (AUC = 0.91) when compared to that of CUS + Clin (AUC = 0.84) and Clin + Rad-score (AUC = 0.74), respectively (both P < 0.05). In addition, the sensitivity of this combined model was higher than that of single Rad-score model (100.00% vs. 71.43%, P = 0.031) without compromising the specificity value (82.86% vs. 88.57%, P = 0.334). The calibration curve and decision curve analysis also indicated the clinical effectiveness of the proposed combined nomogram. The combined CUS-clinic-radiomics model may help improve the discrimination of BPGLs from MPGLs.
科研通智能强力驱动
Strongly Powered by AbleSci AI