Tip enrichment surface-enhanced Raman scattering based on the partial Leidenfrost phenomenon for the ultrasensitive nanosensors

纳米传感器 分析物 毛细管作用 检出限 纳米技术 纳米颗粒 福瑞姆 拉曼散射 材料科学 化学 分子 分析化学(期刊) 蒸发 色谱法 拉曼光谱 光学 有机化学 杀虫剂 生物 热力学 物理 复合材料 农学
作者
Ruiyuan Zhang,Liang Yu,Hongjun You,Rui Hao,Jixiang Fang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:355: 131250-131250 被引量:4
标识
DOI:10.1016/j.snb.2021.131250
摘要

Surface-enhanced Raman scattering (SERS) possesses the advantage that directly detects target analytes in solution with high specificity and sensitivity without complicated pretreatment procedures. It remains a challenge in most practical applications to achieve molecule sensitivity in any highly diluted solutions. Here, we develop a robust and practical molecular enrichment strategy that can effectively confine analyte molecules and Au nanoparticles together in a short time into a small-sized sensitive region on a needle tip, based on the Leidenfrost phenomenon and capillary force. In this strategy, the Leidenfrost evaporation phenomenon maintains the analytes droplet in a Cassie state based on a levitating force, and at the same time, a hung needle tip anchors the droplet based on the capillary force. After 1–2 min quick evaporation, more than 98% Au nanoparticles and analytes can be condensed into an around 0.5 mm small size area on the needle tip. Due to the significant enrichment capability and reproducibility, the SERS measurement enables to achieve the limit of detection (LOD) down to 0.08 nM (at an S/N ratio of 3) for crystal violet (CV) molecules and to nM level for several types of pesticide molecules (glyphosate, carbendazim, thiram and choline) in ethanol solution. The strategy was also applied to the detection of CV molecules in mixture pigments solution, thiram in spiked environment water samples, with good selectivity and sensitivity. In addition, using the high thermal conductivity substrate without additional surface modification, this enrichment SERS detection may open the possibility of universal applications due to its facile and cost-effective. The accurate site of the needle tip offers great practical potentials for on-site identification by using a handheld Raman spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ATAYA发布了新的文献求助10
1秒前
星瑆心发布了新的文献求助10
1秒前
Lazarus_x完成签到,获得积分10
2秒前
whm发布了新的文献求助10
3秒前
豆dou发布了新的文献求助10
5秒前
旭日东升完成签到 ,获得积分10
6秒前
yyyyou完成签到,获得积分10
7秒前
科研通AI5应助xlj采纳,获得10
9秒前
Jenny应助WZ0904采纳,获得10
9秒前
弘一完成签到,获得积分10
9秒前
郑zhenglanyou完成签到 ,获得积分10
10秒前
12秒前
忧子忘完成签到,获得积分10
12秒前
13秒前
foreverchoi完成签到,获得积分10
13秒前
HH完成签到,获得积分20
13秒前
14秒前
whm完成签到,获得积分10
14秒前
16秒前
邬傥完成签到,获得积分10
17秒前
tomato应助执着采纳,获得20
18秒前
大方嵩发布了新的文献求助10
18秒前
梓ccc完成签到,获得积分10
18秒前
18秒前
求助发布了新的文献求助10
19秒前
风雨1210发布了新的文献求助10
19秒前
19秒前
20秒前
小梁要加油完成签到,获得积分20
20秒前
Alpha发布了新的文献求助10
21秒前
刘鹏宇发布了新的文献求助10
22秒前
zhangscience完成签到,获得积分10
22秒前
可爱的函函应助若狂采纳,获得10
23秒前
小蘑菇应助阿美采纳,获得30
23秒前
科研通AI2S应助机智小虾米采纳,获得10
24秒前
充电宝应助Xx.采纳,获得10
25秒前
zhangscience发布了新的文献求助10
26秒前
深情安青应助大方嵩采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808