Laser induced forward transfer of high viscosity silver paste on double groove structure

材料科学 激光器 粘度 光学 沟槽(工程) 复合材料 冶金 物理
作者
Yilin Shan,Xianmin Zhang,Gengchao Chen,Kai Li
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:148: 107795-107795 被引量:4
标识
DOI:10.1016/j.optlastec.2021.107795
摘要

Front side metallization is a critical process for the production of solar cells; current research focuses on downsizing finger electrodes and lowering printing costs. Laser-induced forward transfer (LIFT) has the advantages of non-contact and non-mask, which can reduce wafer breakage and silver paste usage during front side metallization. Although LIFT is beneficial in reducing printing costs, it is difficult to further downsize fingers electrodes. In this study, a silicon wafer with a laser-etched double groove structure was adopted as the acceptor to increase the printing resolution of LIFT. During the transfer process, contact between silver paste film and acceptor can only occur in the narrow area between the double grooves. Since the contact area is restricted, the width of the printed line will not exceed the narrow area. This approach improves printing resolution while preserving non-contact and non-mask characteristics. The lines printed have an average width of 30.5 μm and an average aspect ratio of 0.97. Furthermore, the line’s width will not be affected by fluctuations in laser fluence within a specific laser fluence interval. The research with different viscosities revealed four distinct transfer regimes. Through a visual observation system, the donor removal processes of different transfer regimes were observed. The experimental results show that only the sharp-shaped line transfer can achieve high-resolution lines, and the optimal results can be obtained only at a viscosity of 25 Pa·s. Finally, double pulses transfer was adopted to address the issue of excessive line thickness fluctuations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
善学以致用应助oue采纳,获得10
1秒前
1秒前
1秒前
HCT完成签到,获得积分10
2秒前
2秒前
2秒前
limerence发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助玥越采纳,获得10
3秒前
1chen完成签到 ,获得积分10
3秒前
4秒前
刘霆勋发布了新的文献求助10
4秒前
哪位完成签到,获得积分10
4秒前
风吹麦田应助fish采纳,获得100
5秒前
fnuew发布了新的文献求助10
5秒前
JIANGSHUI发布了新的文献求助10
6秒前
林深完成签到,获得积分10
6秒前
风清扬发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
山雷发布了新的文献求助10
6秒前
Sylvia完成签到,获得积分10
7秒前
struggle完成签到,获得积分20
7秒前
科研小尹发布了新的文献求助10
7秒前
齐天大圣完成签到,获得积分10
8秒前
禹宛白发布了新的文献求助10
8秒前
jhonnyhuang发布了新的文献求助10
9秒前
9秒前
JIANGSHUI完成签到,获得积分10
10秒前
万金油完成签到 ,获得积分10
10秒前
老王爱学习完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
Kia发布了新的文献求助30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802