Combining Machine Learning and Numerical Simulation for High-Resolution PM2.5 Concentration Forecast

环境科学 气象学 预测验证 预测技巧 化学输运模型 时间分辨率 资源(消歧) 计算机科学 空气质量指数 地理 计算机网络 物理 量子力学
作者
Jianzhao Bi,K. Emma Knowland,Christoph A. Keller,Yang Liu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (3): 1544-1556 被引量:50
标识
DOI:10.1021/acs.est.1c05578
摘要

Forecasting ambient PM2.5 concentrations with spatiotemporal coverage is key to alerting decision makers of pollution episodes and preventing detrimental public exposure, especially in regions with limited ground air monitoring stations. The existing methods rely on either chemical transport models (CTMs) to forecast spatial distribution of PM2.5 with nontrivial uncertainty or statistical algorithms to forecast PM2.5 concentration time series at air monitoring locations without continuous spatial coverage. In this study, we developed a PM2.5 forecast framework by combining the robust Random Forest algorithm with a publicly accessible global CTM forecast product, NASA's Goddard Earth Observing System "Composition Forecasting" (GEOS-CF), providing spatiotemporally continuous PM2.5 concentration forecasts for the next 5 days at a 1 km spatial resolution. Our forecast experiment was conducted for a region in Central China including the populous and polluted Fenwei Plain. The forecast for the next 2 days had an overall validation R2 of 0.76 and 0.64, respectively; the R2 was around 0.5 for the following 3 forecast days. Spatial cross-validation showed similar validation metrics. Our forecast model, with a validation normalized mean bias close to 0, substantially reduced the large biases in GEOS-CF. The proposed framework requires minimal computational resources compared to running CTMs at urban scales, enabling near-real-time PM2.5 forecast in resource-restricted environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gu发布了新的文献求助20
刚刚
FashionBoy应助幸福剑身采纳,获得10
1秒前
KKKZ发布了新的文献求助10
3秒前
酷波er应助BBH采纳,获得10
4秒前
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
GGbond完成签到,获得积分10
10秒前
阿幽完成签到 ,获得积分10
11秒前
情怀应助追寻麦片采纳,获得10
11秒前
单纯面包发布了新的文献求助10
11秒前
huahero2025发布了新的文献求助10
11秒前
13秒前
mufcyang完成签到,获得积分10
14秒前
酷波er应助彪壮的明轩采纳,获得10
14秒前
lxf发布了新的文献求助10
14秒前
风中的元菱完成签到,获得积分10
16秒前
19秒前
paopao完成签到 ,获得积分10
20秒前
852应助单纯面包采纳,获得10
25秒前
现代夏青完成签到 ,获得积分10
27秒前
充电宝应助科研通管家采纳,获得30
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
29秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
ww应助能干夏波采纳,获得10
30秒前
35秒前
35秒前
所所应助深霖阳光采纳,获得30
36秒前
笑点低凌珍完成签到 ,获得积分10
38秒前
38秒前
冷傲山彤发布了新的文献求助10
39秒前
乐乐乐完成签到,获得积分10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738374
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026729
捐赠科研通 2998684
什么是DOI,文献DOI怎么找? 1645363
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901