Structural semantic interconnections: a knowledge-based approach to word sense disambiguation

词义消歧 计算机科学 自然语言处理 学期 人工智能 词(群论) 语义学(计算机科学) WordNet公司 语言学 任务(项目管理) 程序设计语言 哲学 管理 经济
作者
Roberto Navigli,Paola Velardi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 1075-1086 被引量:348
标识
DOI:10.1109/tpami.2005.149
摘要

Word Sense Disambiguation (WSD) is traditionally considered an Al-hard problem. A break-through in this field would have a significant impact on many relevant Web-based applications, such as Web information retrieval, improved access to Web services, information extraction, etc. Early approaches to WSD, based on knowledge representation techniques, have been replaced in the past few years by more robust machine learning and statistical techniques. The results of recent comparative evaluations of WSD systems, however, show that these methods have inherent limitations. On the other hand, the increasing availability of large-scale, rich lexical knowledge resources seems to provide new challenges to knowledge-based approaches. In this paper, we present a method, called structural semantic interconnections (SSI), which creates structural specifications of the possible senses for each word in a context and selects the best hypothesis according to a grammar G, describing relations between sense specifications. Sense specifications are created from several available lexical resources that we integrated in part manually, in part with the help of automatic procedures. The SSI algorithm has been applied to different semantic disambiguation problems, like automatic ontology population, disambiguation of sentences in generic texts, disambiguation of words in glossary definitions. Evaluation experiments have been performed on specific knowledge domains (e.g., tourism, computer networks, enterprise interoperability), as well as on standard disambiguation test sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不会学术的羊完成签到,获得积分10
刚刚
chart完成签到 ,获得积分10
3秒前
Hai发布了新的文献求助10
3秒前
Kyrie完成签到,获得积分10
3秒前
Akim应助wenwen采纳,获得10
3秒前
HS完成签到,获得积分10
3秒前
4秒前
6秒前
科研完成签到,获得积分20
9秒前
英俊的铭应助目土土采纳,获得10
10秒前
科研路上的干饭桶完成签到,获得积分10
11秒前
杨杨发布了新的文献求助30
12秒前
ssk完成签到,获得积分10
12秒前
13秒前
苹果路人完成签到,获得积分10
13秒前
快乐一江完成签到 ,获得积分10
14秒前
啊啊啊慧完成签到,获得积分10
14秒前
九星完成签到,获得积分10
15秒前
古希腊掌管科研的神完成签到,获得积分20
16秒前
Aprilapple发布了新的文献求助10
18秒前
linlin完成签到,获得积分10
18秒前
zhuzhuxia完成签到,获得积分10
19秒前
20秒前
Hai关注了科研通微信公众号
21秒前
机智的紫丝完成签到,获得积分10
22秒前
23秒前
激昂的微笑完成签到,获得积分10
23秒前
史开慧完成签到,获得积分20
24秒前
24秒前
25秒前
ZhouTY完成签到,获得积分10
25秒前
life完成签到,获得积分10
27秒前
英姑应助炙热逍遥采纳,获得10
27秒前
念念完成签到 ,获得积分10
29秒前
猪猪发布了新的文献求助10
29秒前
李月月发布了新的文献求助10
30秒前
32秒前
清梦完成签到,获得积分10
32秒前
可可西里完成签到 ,获得积分10
33秒前
loulan完成签到,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258135
求助须知:如何正确求助?哪些是违规求助? 2899933
关于积分的说明 8308256
捐赠科研通 2569175
什么是DOI,文献DOI怎么找? 1395555
科研通“疑难数据库(出版商)”最低求助积分说明 653117
邀请新用户注册赠送积分活动 630990