电化学发光
化学
适体
电极
离子
分析化学(期刊)
色谱法
物理化学
遗传学
生物
有机化学
作者
Yan-Mei Lei,Weixing Huang,Min Zhao,Yaqin Chai,Ruo Yuan,Ying Zhuo
标识
DOI:10.1021/acs.analchem.5b01445
摘要
In this paper, a novel electrochemiluminescence resonance energy transfer (ECL-RET) system from O2/S2O8(2-) to a kind of amino-terminated perylene derivative (PTC-NH2) was demonstrated for the first time, which was then applied to construct a ratiometric aptasensor for lead ion (Pb(2+)) detection. First, gold-nanoparticles-functionalized fullerene nanocomposites (AuNPs@nano-C60) were coated on a glassy carbon electrode (GCE), and then thiol-modified assistant probes (APs) were attached on AuNPs@nano-C60/GCE. Then the resultant electrode was hybridized with capture probes (the aptamer of the Pb(2+), abbreviated as CPs) to generate DNA duplexes, which could induce PTC-NH2 to be intercalated into the dsDNA grooves by the electrostatic adsorption. Herein, ECL dual peaks at -0.7 V (vs Ag/AgCl) and -2.0 V (vs Ag/AgCl) were obtained when the prepared aptasensor was detected in air-saturated S2O8(2-) solution, which could be attributed to the emission of excited dimmers (π-excimers) ((1)(NH2-PTC)2*) and (1)(O2)2*, respectively. In the presence of Pb(2+), the dsDNA was unwound, and Pb(2+) G-quadruplex structure was generated because of the highly specific affinity between Pb(2+) and CPs, which made the PTC-NH2 release from the electrode surface. As a result, the ECL signal at -0.7 V was decreased, and the ECL signal around -2.0 V was increased. By measuring the ratio of ECL intensities at two excitation potentials, the developed aptasensor exhibited the linear response range from 1.0 × 10(-12) M to 1.0 × 10(-7) M with a detection limit of 3.5 × 10(-13) M (S/N = 3) for Pb(2+), which could offer an alternative analytical method with excellent properties of high selectivity, accuracy, and sensitivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI