Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS2 Grown by Vapor Transport

材料科学 拉曼光谱 二硫化钼 化学气相沉积 单层 极限抗拉强度 滑脱 光致发光 复合材料 磁滞 拉伤 纳米技术 光电子学 光学 凝聚态物理 内科学 物理 医学
作者
Amber McCreary,Rudresh Ghosh,Matin Amani,Jin Wang,Karel-Alexander N. Duerloo,Ankit Sharma,Karalee Jarvis,Evan J. Reed,Avinash M. Dongare,Sanjay K. Banerjee,Mauricio Terrones,Raju R. Namburu,Madan Dubey
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (3): 3186-3197 被引量:79
标识
DOI:10.1021/acsnano.5b04550
摘要

One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助胡豆豆采纳,获得10
刚刚
早睡早起发布了新的文献求助10
1秒前
张教授完成签到 ,获得积分10
1秒前
2秒前
GRG完成签到 ,获得积分0
2秒前
4秒前
4秒前
jui完成签到,获得积分20
4秒前
Lucas应助luckyblue采纳,获得10
5秒前
Fi9zero关注了科研通微信公众号
5秒前
6秒前
吉星发布了新的文献求助10
8秒前
苏紫梗桔发布了新的文献求助10
9秒前
张来完成签到 ,获得积分10
10秒前
10秒前
西乡塘塘主完成签到,获得积分10
10秒前
Sky完成签到,获得积分10
11秒前
吉星高照完成签到,获得积分10
12秒前
12秒前
阿呆呆奇发布了新的文献求助10
12秒前
nanami完成签到,获得积分10
13秒前
灵巧胜完成签到 ,获得积分10
14秒前
斯文败类应助莫西莫西采纳,获得10
15秒前
果蝇之母完成签到 ,获得积分10
16秒前
16秒前
min发布了新的文献求助40
17秒前
坚强的茗茗完成签到,获得积分10
18秒前
丘比特应助善良的天荷采纳,获得10
18秒前
son完成签到,获得积分10
19秒前
小橙子变大计划完成签到,获得积分10
19秒前
Nick_YFWS完成签到,获得积分10
19秒前
20秒前
阿呆呆奇完成签到,获得积分10
20秒前
21秒前
JG发布了新的文献求助20
21秒前
高远玺完成签到 ,获得积分10
21秒前
一汪完成签到,获得积分10
22秒前
24秒前
我想静静完成签到 ,获得积分10
25秒前
smujj完成签到,获得积分10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564