Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS2 Grown by Vapor Transport

材料科学 拉曼光谱 二硫化钼 化学气相沉积 单层 极限抗拉强度 滑脱 光致发光 复合材料 磁滞 拉伤 纳米技术 光电子学 光学 凝聚态物理 内科学 物理 医学
作者
Amber McCreary,Rudresh Ghosh,Matin Amani,Jin Wang,Karel-Alexander N. Duerloo,Ankit Sharma,Karalee Jarvis,Evan J. Reed,Avinash M. Dongare,Sanjay K. Banerjee,Mauricio Terrones,Raju R. Namburu,Madan Dubey
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (3): 3186-3197 被引量:79
标识
DOI:10.1021/acsnano.5b04550
摘要

One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到 ,获得积分10
1秒前
1秒前
钰天心应助余问芙采纳,获得10
2秒前
2秒前
All_too_well发布了新的文献求助10
2秒前
heisproton发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
十八稀发布了新的文献求助10
4秒前
4秒前
机智翼发布了新的文献求助10
4秒前
suijinicheng完成签到,获得积分10
4秒前
科研小白发布了新的文献求助10
5秒前
ding应助伶俐的平蓝采纳,获得10
6秒前
6秒前
YXY完成签到,获得积分20
6秒前
英俊的铭应助明理的枫叶采纳,获得10
6秒前
爆米花应助丫丫采纳,获得10
7秒前
6666发布了新的文献求助10
7秒前
呃呃呃c发布了新的文献求助10
7秒前
英俊的铭应助多吃元气饭采纳,获得30
8秒前
1234567完成签到,获得积分10
8秒前
bkagyin应助忧虑的安青采纳,获得10
8秒前
田様应助浏阳河采纳,获得10
8秒前
9秒前
细心的小鸽子完成签到,获得积分10
9秒前
thchiang完成签到 ,获得积分10
9秒前
嵇丹雪发布了新的文献求助10
10秒前
完美世界应助由加采纳,获得10
10秒前
All_too_well完成签到,获得积分20
10秒前
YXY发布了新的文献求助10
10秒前
10秒前
lk完成签到,获得积分10
10秒前
打打应助魂断红颜采纳,获得10
11秒前
大个应助魂断红颜采纳,获得10
11秒前
11秒前
rd216完成签到,获得积分10
12秒前
12秒前
PORCO完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608030
求助须知:如何正确求助?哪些是违规求助? 4692545
关于积分的说明 14875103
捐赠科研通 4716441
什么是DOI,文献DOI怎么找? 2543963
邀请新用户注册赠送积分活动 1509033
关于科研通互助平台的介绍 1472758