Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS2 Grown by Vapor Transport

材料科学 拉曼光谱 二硫化钼 化学气相沉积 单层 极限抗拉强度 滑脱 光致发光 复合材料 磁滞 拉伤 纳米技术 光电子学 光学 凝聚态物理 内科学 物理 医学
作者
Amber McCreary,Rudresh Ghosh,Matin Amani,Jin Wang,Karel-Alexander N. Duerloo,Ankit Sharma,Karalee Jarvis,Evan J. Reed,Avinash M. Dongare,Sanjay K. Banerjee,Mauricio Terrones,Raju R. Namburu,Madan Dubey
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (3): 3186-3197 被引量:79
标识
DOI:10.1021/acsnano.5b04550
摘要

One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助QY11采纳,获得10
1秒前
刘康艺完成签到,获得积分10
1秒前
AIXIN发布了新的文献求助10
2秒前
2秒前
yy发布了新的文献求助10
2秒前
天天快乐应助乾乾采纳,获得10
3秒前
赘婿应助加油采纳,获得10
3秒前
华仔应助jojoy采纳,获得10
3秒前
ZZ发布了新的文献求助10
4秒前
石烟祝完成签到,获得积分10
4秒前
小黑鲨发布了新的文献求助10
4秒前
慕青应助dududu采纳,获得10
5秒前
勤劳冰烟应助时尚的代秋采纳,获得10
5秒前
冷傲的无剑完成签到,获得积分10
6秒前
李健的小迷弟应助天玄采纳,获得10
6秒前
luo完成签到 ,获得积分10
7秒前
7秒前
7秒前
周小丁发布了新的文献求助10
7秒前
领导范儿应助香香香采纳,获得10
7秒前
打工人完成签到,获得积分10
8秒前
8秒前
大气如冰应助zzz采纳,获得10
8秒前
9秒前
韆木完成签到,获得积分20
9秒前
10秒前
庾凌青完成签到 ,获得积分10
10秒前
跑向wb完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
万花谷发布了新的文献求助10
13秒前
搜集达人应助emmm采纳,获得10
13秒前
一两风发布了新的文献求助10
13秒前
wwwwrrrrr发布了新的文献求助10
14秒前
yahage完成签到 ,获得积分10
15秒前
科研通AI5应助纸包鱼采纳,获得10
15秒前
dududu发布了新的文献求助10
15秒前
SICHEN应助令狐擎宇采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760