蛋白酶3
髓过氧化物酶
分子生物学
p38丝裂原活化蛋白激酶
MAPK/ERK通路
激酶
蛋白激酶A
化学
免疫学
生物
生物化学
炎症
作者
Ralph Kettritz,Adrian Schreiber,Friedrich C. Luft,Hermann Haller
出处
期刊:Journal of The American Society of Nephrology
日期:2001-01-01
卷期号:12 (1): 37-46
被引量:97
摘要
Abstract. Antineutrophil cytoplasmic antibodies (ANCA) may be important in the pathophysiology of necrotizing vasculitis. ANCA activate human neutrophils primed with tumor necrosis factor-α (TNF-α) in vitro . TNF-α priming results in translocation of ANCA antigens to the cell surface, where they are recognized by the antibodies. The signaling mechanisms involved in TNF-α priming and subsequent ANCA-induced activation were investigated. TNF-α-primed neutrophils were stimulated with monoclonal antibodies (MAb) to human myeloperoxidase (MPO) and proteinase 3 (PR3), and with preparations of human ANCA (three patients with PR3-ANCA and two patients with MPO-ANCA). Respiratory burst was measured with superoxide dismutase-inhibitable ferricytochrome C reduction and using dihydro-rhodamine-1,2,3. Phosphorylation of p38 mitogen-activated protein kinase (p38-MAPK) and the extracellular signal-regulated kinase (ERK) were assessed by immunoblotting. ANCA-antigen translocation was studied by flow cytometry. The tyrosine phosphorylation inhibitor genistein, but not calphostin or staurosporin, resulted in a significant dose-dependent superoxide generation inhibition (11.6 ± 1.7 nmol to 2.1 ± 0.5 for PR3-ANCA, and 16.0 ± 2.8 to 3.3 ± 1.3 for MPO-ANCA). The p38-MAPK inhibitor (SB202190) and the ERK inhibitor (PD98059) diminished PR3-ANCA-mediated superoxide production dose dependently (11.6 ± 1.7 nmol O 2 - to 1.9 ± 0.6 with 50 μM SB202190 and 4.0 ± 0.6 with 50 μM PD098059, respectively). For MPO-ANCA, the results were similar (16.0 ± 2.8 nmol to 0.9 ± 1.0 nmol with SB202190 and 6.4 ± 2.4 nmol with PD98059, respectively). Western blot showed phosphorylation of both p38-MAPK and ERK during TNF-α priming. The p38-MAPK inhibitor and the ERK inhibitor showed the strongest effect on respiratory burst when added before TNF-α priming, further supporting an important role for both signaling pathways in the priming process. Flow cytometry showed that p38-MAPK inhibition decreased the translocation of PR3 (by 93 ± 2%) and of MPO (by 64 ± 2%). In contrast, no such effect was seen when ERK was inhibited. Thus, p38-MAPK and ERK are important for the TNF-α-mediated priming of neutrophils enabling subsequent ANCA-induced respiratory burst. However, both pathways show differential effects, whereby p38-MAPK controls the translocation of ANCA antigens to the cell surface.
科研通智能强力驱动
Strongly Powered by AbleSci AI