占用网格映射
计算机科学
可扩展性
同时定位和映射
网格
人工智能
匹配(统计)
激光雷达
计算机视觉
软件
实时计算
机器人
占用率
移动机器人
几何学
数据库
生物
统计
地质学
遥感
数学
程序设计语言
生态学
作者
Stefan Kohlbrecher,Oskar von Stryk,Johannes Meyer,Uwe Klingauf
标识
DOI:10.1109/ssrr.2011.6106777
摘要
For many applications in Urban Search and Rescue (USAR) scenarios robots need to learn a map of unknown environments. We present a system for fast online learning of occupancy grid maps requiring low computational resources. It combines a robust scan matching approach using a LIDAR system with a 3D attitude estimation system based on inertial sensing. By using a fast approximation of map gradients and a multi-resolution grid, reliable localization and mapping capabilities in a variety of challenging environments are realized. Multiple datasets showing the applicability in an embedded hand-held mapping system are provided. We show that the system is sufficiently accurate as to not require explicit loop closing techniques in the considered scenarios. The software is available as an open source package for ROS.
科研通智能强力驱动
Strongly Powered by AbleSci AI