Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence

医学诊断 人工智能 医学 计算机科学 机器学习 介绍 决策支持系统 临床决策支持系统 病历 经济短缺 数据科学 病理 家庭医学 放射科 政府(语言学) 哲学 语言学
作者
Huiying Liang,Brian Tsui,Hao Ni,Carolina C. S. Valentim,Sally L. Baxter,Guangjian Liu,Wenjia Cai,Daniel Kermany,Xin Sun,Jiancong Chen,Liya He,Jie Zhu,Tian Pin,Hua Shao,Lianghong Zheng,Rui Hou,Sierra Hewett,Gen Li,Ping Liang,Xuan Zang
出处
期刊:Nature Medicine [Springer Nature]
卷期号:25 (3): 433-438 被引量:671
标识
DOI:10.1038/s41591-018-0335-9
摘要

Artificial intelligence (AI)-based methods have emerged as powerful tools to transform medical care. Although machine learning classifiers (MLCs) have already demonstrated strong performance in image-based diagnoses, analysis of diverse and massive electronic health record (EHR) data remains challenging. Here, we show that MLCs can query EHRs in a manner similar to the hypothetico-deductive reasoning used by physicians and unearth associations that previous statistical methods have not found. Our model applies an automated natural language processing system using deep learning techniques to extract clinically relevant information from EHRs. In total, 101.6 million data points from 1,362,559 pediatric patient visits presenting to a major referral center were analyzed to train and validate the framework. Our model demonstrates high diagnostic accuracy across multiple organ systems and is comparable to experienced pediatricians in diagnosing common childhood diseases. Our study provides a proof of concept for implementing an AI-based system as a means to aid physicians in tackling large amounts of data, augmenting diagnostic evaluations, and to provide clinical decision support in cases of diagnostic uncertainty or complexity. Although this impact may be most evident in areas where healthcare providers are in relative shortage, the benefits of such an AI system are likely to be universal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助ltyuli采纳,获得10
刚刚
刚刚
1秒前
1秒前
3秒前
Yikepp完成签到,获得积分10
3秒前
3秒前
Jared应助慕小宇采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
DD应助科研通管家采纳,获得20
4秒前
mcy完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
爆米花应助RC_Wang采纳,获得10
5秒前
大宝君应助jianghs采纳,获得30
6秒前
gaga发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
7秒前
7秒前
木头人完成签到,获得积分10
9秒前
小马甲应助槑槑姊采纳,获得10
9秒前
SJJ应助黎明采纳,获得10
9秒前
鹊起惊梦发布了新的文献求助10
11秒前
111发布了新的文献求助10
12秒前
13秒前
星辰大海应助唠叨的可燕采纳,获得10
15秒前
16秒前
小柯基学从零学起完成签到 ,获得积分10
16秒前
17秒前
斧王发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
鹊起惊梦完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569633
求助须知:如何正确求助?哪些是违规求助? 4654420
关于积分的说明 14710265
捐赠科研通 4595934
什么是DOI,文献DOI怎么找? 2522161
邀请新用户注册赠送积分活动 1493390
关于科研通互助平台的介绍 1463987