SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

计算机科学 人工智能 特征(语言学) 编码器 增采样 卷积神经网络 联营 像素 水准点(测量) 分割 模式识别(心理学) 网络体系结构 图像分割 深度学习 计算机视觉 图像(数学) 哲学 操作系统 语言学 计算机安全 地理 大地测量学
作者
Vijay Badrinarayanan,A. C. Kendall,Roberto Cipolla
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 2481-2495 被引量:16211
标识
DOI:10.1109/tpami.2016.2644615
摘要

We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dopamine完成签到,获得积分10
刚刚
FashionBoy应助雨愈采纳,获得10
刚刚
大个应助里里采纳,获得10
刚刚
2秒前
堡主发布了新的文献求助10
3秒前
5秒前
fengyu完成签到 ,获得积分10
5秒前
fang20130608发布了新的文献求助10
6秒前
kosmos完成签到,获得积分10
6秒前
Rrr完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
9秒前
平安如意完成签到,获得积分10
10秒前
小二郎应助Maximuszhao采纳,获得10
11秒前
ding应助王家昌采纳,获得10
11秒前
11秒前
英姑应助Jess采纳,获得10
11秒前
enzyme发布了新的文献求助10
13秒前
13秒前
重要的平灵完成签到 ,获得积分10
14秒前
14秒前
14秒前
周同庆发布了新的文献求助10
15秒前
nnnnn发布了新的文献求助30
16秒前
16秒前
丘比特应助nicholas采纳,获得10
16秒前
17秒前
17秒前
要减肥香水完成签到,获得积分10
18秒前
19秒前
19秒前
科研通AI2S应助哭泣代容采纳,获得10
20秒前
隐形期待完成签到,获得积分10
20秒前
追寻念云完成签到 ,获得积分10
20秒前
周同庆完成签到,获得积分10
21秒前
ffff发布了新的文献求助80
21秒前
桐桐应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5359849
求助须知:如何正确求助?哪些是违规求助? 4490590
关于积分的说明 13979660
捐赠科研通 4393088
什么是DOI,文献DOI怎么找? 2413195
邀请新用户注册赠送积分活动 1405995
关于科研通互助平台的介绍 1380343