已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

计算机科学 人工智能 特征(语言学) 编码器 增采样 卷积神经网络 联营 像素 水准点(测量) 分割 模式识别(心理学) 网络体系结构 图像分割 深度学习 计算机视觉 图像(数学) 哲学 操作系统 语言学 计算机安全 地理 大地测量学
作者
Vijay Badrinarayanan,A. C. Kendall,Roberto Cipolla
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:39 (12): 2481-2495 被引量:16211
标识
DOI:10.1109/tpami.2016.2644615
摘要

We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜的秀发布了新的文献求助10
1秒前
义气的钥匙完成签到,获得积分10
2秒前
顺利毕业完成签到 ,获得积分10
3秒前
bkagyin应助hyc采纳,获得10
5秒前
7秒前
9秒前
9秒前
小凉完成签到 ,获得积分10
10秒前
12秒前
隐形不言发布了新的文献求助10
12秒前
hyc完成签到,获得积分20
13秒前
13秒前
大白发布了新的文献求助80
16秒前
baihehuakai完成签到 ,获得积分10
16秒前
Lanx发布了新的文献求助10
19秒前
22秒前
24秒前
RockRedfoo完成签到 ,获得积分10
26秒前
Zayne发布了新的文献求助10
26秒前
Wan发布了新的文献求助10
27秒前
28秒前
Lanx完成签到,获得积分10
30秒前
8R60d8应助LILI采纳,获得10
31秒前
认真的豆豆完成签到,获得积分10
35秒前
袅袅完成签到,获得积分10
36秒前
Aamidtou完成签到,获得积分10
37秒前
能干的阿拉蕾完成签到 ,获得积分10
41秒前
卡卡西西西完成签到,获得积分10
42秒前
珊珊发布了新的文献求助10
42秒前
Zayne完成签到,获得积分10
43秒前
今后应助good233采纳,获得10
45秒前
幼稚完成签到,获得积分10
46秒前
浩淼发布了新的文献求助10
49秒前
英俊的铭应助bai采纳,获得10
53秒前
雪白寄容关注了科研通微信公众号
53秒前
54秒前
54秒前
伊橙发布了新的文献求助10
57秒前
QY_0411发布了新的文献求助10
57秒前
量子星尘发布了新的文献求助10
58秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021