SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

计算机科学 人工智能 特征(语言学) 编码器 增采样 卷积神经网络 联营 像素 水准点(测量) 分割 模式识别(心理学) 网络体系结构 图像分割 深度学习 计算机视觉 图像(数学) 哲学 操作系统 语言学 计算机安全 地理 大地测量学
作者
Vijay Badrinarayanan,A. C. Kendall,Roberto Cipolla
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:39 (12): 2481-2495 被引量:15297
标识
DOI:10.1109/tpami.2016.2644615
摘要

We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ivy发布了新的文献求助10
1秒前
完美世界应助杰尼龟采纳,获得30
1秒前
2秒前
windcreator发布了新的文献求助10
3秒前
Brain完成签到,获得积分10
3秒前
吴旭东发布了新的文献求助10
3秒前
yar举报羊水彤求助涉嫌违规
3秒前
科目三应助Wang采纳,获得10
4秒前
共享精神应助Wang采纳,获得10
4秒前
4秒前
张三毛发布了新的文献求助10
4秒前
4秒前
4秒前
Ruby发布了新的文献求助10
5秒前
科研通AI2S应助尧九采纳,获得10
5秒前
5秒前
乐观帅哥完成签到,获得积分10
6秒前
6秒前
6秒前
创新发布了新的文献求助10
6秒前
7秒前
labxgr发布了新的文献求助10
7秒前
8秒前
酷波er应助hamzhang0426采纳,获得10
8秒前
咻咻应助外汇交易员采纳,获得20
8秒前
李健的小迷弟应助111采纳,获得10
8秒前
zxh发布了新的文献求助10
9秒前
科研通AI2S应助科研r采纳,获得10
9秒前
9秒前
吴旭东完成签到,获得积分10
9秒前
adamchris应助布林布林2280采纳,获得10
10秒前
10秒前
10秒前
多宝鱼发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
专注翠霜完成签到,获得积分10
11秒前
12秒前
ZDD完成签到,获得积分20
12秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262319
求助须知:如何正确求助?哪些是违规求助? 2903010
关于积分的说明 8323831
捐赠科研通 2573054
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 653988
邀请新用户注册赠送积分活动 632568