Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data

逻辑回归 萧条(经济学) 支持向量机 脑电图 人工智能 机器学习 随机森林 心理学 医学 精神科 计算机科学 宏观经济学 经济
作者
Xinfang Ding,Xinxin Yue,Rui Zheng,Cheng Bi,Dai Li,Guizhong Yao
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:251: 156-161 被引量:93
标识
DOI:10.1016/j.jad.2019.03.058
摘要

Major depression disorder (MDD) is one of the most prevalent mental disorders worldwide. Diagnosing depression in the early stage is crucial to treatment process. However, due to depression's comorbid nature and the subjectivity in diagnosis, an early diagnosis could be challenging. Recently, machine learning approaches have been used to process Electroencephalography (EEG) and neuroimaging data to facilitate the diagnosis. In the present study, we used a multimodal machine learning approach involving EEG, eye tracking and galvanic skin response data as input to classify depression patients and healthy controls.One hundred and forty-four MDD depression patients and 204 matched healthy controls were recruited. They were required to watch a series of affective and neutral stimuli while EEG, eye tracking information and galvanic skin response were recorded via a set of low-cost, portable devices. Three machine learning algorithms including Random Forests, Logistic Regression and Support Vector Machine (SVM) were trained to build dichotomous classification model.The results showed that the highest classification f1 score was obtained by Logistic Regression algorithms, with accuracy = 79.63%, precision = 76.67%, recall = 85.19% and f1 score = 80.70% LIMITATIONS: No hospitalized patients were available; only outpatients were included in the present study. The sample consisted mostly of young adult, and no elder patients were included.The machine learning approach can be a useful tool for classifying MDD patients and healthy controls and may help for diagnostic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞鹰完成签到,获得积分20
刚刚
中央应助hayk采纳,获得10
刚刚
1秒前
2秒前
2秒前
aaabbbccc发布了新的文献求助10
2秒前
科研通AI2S应助周芷卉采纳,获得10
4秒前
5秒前
上官若男应助sandra采纳,获得10
5秒前
5秒前
5秒前
科研通AI2S应助超级泽洋采纳,获得10
6秒前
小中发布了新的文献求助10
7秒前
小二郎应助云风采纳,获得10
7秒前
7秒前
zyl发布了新的文献求助10
8秒前
独特的高山完成签到 ,获得积分10
13秒前
13秒前
14秒前
Khan完成签到,获得积分10
14秒前
15秒前
XXXX完成签到,获得积分10
15秒前
17秒前
zzt37927完成签到,获得积分10
18秒前
nfmhh完成签到,获得积分10
18秒前
周易发布了新的文献求助10
18秒前
18秒前
Khan发布了新的文献求助20
19秒前
科研通AI2S应助叶子采纳,获得10
19秒前
20秒前
Zl完成签到,获得积分10
22秒前
23秒前
酷炫醉山发布了新的文献求助30
24秒前
ebangdeng完成签到,获得积分20
25秒前
25秒前
z1y1p1完成签到,获得积分10
25秒前
我是老大应助别骂小喷菇采纳,获得10
26秒前
乐乐应助Zl采纳,获得10
27秒前
zzt37927发布了新的文献求助10
28秒前
清梦完成签到,获得积分10
31秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265