An overview of online fake news: Characterization, detection, and discussion

主流 社会化媒体 计算机科学 假新闻 点(几何) 公共关系 万维网 政治学 互联网隐私 几何学 数学 法学
作者
Xichen Zhang,Ali A. Ghorbani
出处
期刊:Information Processing and Management [Elsevier]
卷期号:57 (2): 102025-102025 被引量:694
标识
DOI:10.1016/j.ipm.2019.03.004
摘要

Over the recent years, the growth of online social media has greatly facilitated the way people communicate with each other. Users of online social media share information, connect with other people and stay informed about trending events. However, much recent information appearing on social media is dubious and, in some cases, intended to mislead. Such content is often called fake news. Large amounts of online fake news has the potential to cause serious problems in society. Many point to the 2016 U.S. presidential election campaign as having been influenced by fake news. Subsequent to this election, the term has entered the mainstream vernacular. Moreover it has drawn the attention of industry and academia, seeking to understand its origins, distribution and effects. Of critical interest is the ability to detect when online content is untrue and intended to mislead. This is technically challenging for several reasons. Using social media tools, content is easily generated and quickly spread, leading to a large volume of content to analyse. Online information is very diverse, covering a large number of subjects, which contributes complexity to this task. The truth and intent of any statement often cannot be assessed by computers alone, so efforts must depend on collaboration between humans and technology. For instance, some content that is deemed by experts of being false and intended to mislead are available. While these sources are in limited supply, they can form a basis for such a shared effort. In this survey, we present a comprehensive overview of the finding to date relating to fake news. We characterize the negative impact of online fake news, and the state-of-the-art in detection methods. Many of these rely on identifying features of the users, content, and context that indicate misinformation. We also study existing datasets that have been used for classifying fake news. Finally, we propose promising research directions for online fake news analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
YangJie发布了新的文献求助10
2秒前
thanks完成签到,获得积分10
2秒前
yu001完成签到,获得积分10
3秒前
林天完成签到,获得积分10
3秒前
Ava应助1234采纳,获得10
3秒前
伶俐的珊发布了新的文献求助10
3秒前
情怀应助DueDue0327采纳,获得10
3秒前
直率芮发布了新的文献求助10
3秒前
4秒前
雪芜发布了新的文献求助10
4秒前
如意醉香完成签到,获得积分10
4秒前
zl完成签到 ,获得积分10
4秒前
海的呼唤发布了新的文献求助10
4秒前
4秒前
半信美玉完成签到,获得积分10
4秒前
5秒前
梧桐的灯完成签到,获得积分10
6秒前
小二郎应助WQ采纳,获得10
6秒前
球球发布了新的文献求助30
7秒前
wenze完成签到,获得积分10
7秒前
7秒前
李紫婷顺顺顺完成签到 ,获得积分10
8秒前
8秒前
Azhou应助化学天空采纳,获得20
9秒前
鲁滨逊发布了新的文献求助10
9秒前
啊懂发布了新的文献求助10
10秒前
英俊的铭应助闾丘惜萱采纳,获得10
10秒前
11秒前
直率芮完成签到,获得积分10
11秒前
橘子汽水发布了新的文献求助10
11秒前
Myyyy完成签到,获得积分20
11秒前
wangsenyu发布了新的文献求助10
11秒前
suresure发布了新的文献求助10
12秒前
所所应助海的呼唤采纳,获得10
13秒前
13秒前
若什么至发布了新的文献求助10
13秒前
WWJ发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297