An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features

模式识别(心理学) 卷积神经网络 分类器(UML) 特征提取 最小边界框 跳跃式监视 探测器 特征(语言学) 人工神经网络 目标检测 集合(抽象数据类型) 卷积(计算机科学) 计算机科学 计算机视觉 人工智能 图像(数学) 电信 语言学 哲学 程序设计语言
作者
Yu He,Kechen Song,Qinggang Meng,Yunhui Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1493-1504 被引量:694
标识
DOI:10.1109/tim.2019.2915404
摘要

A complete defect detection task aims to achieve the specific class and precise location of each defect in an image, which makes it still challenging for applying this task in practice. The defect detection is a composite task of classification and location, leading to related methods is often hard to take into account the accuracy of both. The implementation of defect detection depends on a special detection data set that contains expensive manual annotations. In this paper, we proposed a novel defect detection system based on deep learning and focused on a practical industrial application: steel plate defect inspection. In order to achieve strong classification ability, this system employs a baseline convolution neural network (CNN) to generate feature maps at each stage, and then the proposed multilevel feature fusion network (MFN) combines multiple hierarchical features into one feature, which can include more location details of defects. Based on these multilevel features, a region proposal network (RPN) is adopted to generate regions of interest (ROIs). For each ROI, a detector, consisting of a classifier and a bounding box regressor, produces the final detection results. Finally, we set up a defect detection data set NEU-DET for training and evaluating our method. On the NEU-DET, our method achieves 74.8/82.3 mAP with baseline networks ResNet34/50 by using 300 proposals. In addition, by using only 50 proposals, our method can detect at 20 ft/s on a single GPU and reach 92% of the above performance, hence the potential for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
WZ0904发布了新的文献求助10
4秒前
狂野静曼完成签到 ,获得积分10
5秒前
武映易完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
8秒前
9秒前
大蒜味酸奶钊完成签到 ,获得积分10
9秒前
鱼宇纸完成签到 ,获得积分10
9秒前
LEE完成签到,获得积分20
9秒前
9秒前
Ava应助无限的绿真采纳,获得10
11秒前
小马甲应助xiongdi521采纳,获得10
11秒前
科研通AI5应助陶醉觅夏采纳,获得200
14秒前
憨鬼憨切发布了新的文献求助10
14秒前
14秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
16秒前
17秒前
18秒前
hh应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
Eva完成签到,获得积分10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
清爽老九应助科研通管家采纳,获得20
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
greenPASS666发布了新的文献求助10
19秒前
涂欣桐应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
secbox完成签到,获得积分10
20秒前
刘哈哈发布了新的文献求助30
20秒前
xyzdmmm完成签到,获得积分10
21秒前
21秒前
欢呼冰岚发布了新的文献求助30
22秒前
xiongdi521发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849