Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types

医学 无线电技术 放射科 特征(语言学) 血肿 神经组阅片室 特征选择 人工智能 模式识别(心理学) 计算机科学 神经学 语言学 精神科 哲学
作者
Yupeng Zhang,Baorui Zhang,Fei Liang,Shikai Liang,Yuxiang Zhang,Peng Yan,Chao Ma,Aihua Liu,Feng Guo,Chuhan Jiang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:29 (4): 2157-2165 被引量:59
标识
DOI:10.1007/s00330-018-5747-x
摘要

To investigate the classification ability of quantitative radiomics features extracted on non-contrast-enhanced CT (NECT) image for discrimination of AVM-related hematomas from those caused by other etiologies. Two hundred sixty-one cases with intraparenchymal hematomas underwent baseline CT scan between 2012 and 2017 in our center. Cases were split into a training dataset (n = 180) and a test dataset (n = 81). Hematoma types were dichotomized into two classes, namely, AVM-related hematomas (AVM-H) and hematomas caused by other etiologies. A total of 576 radiomics features of 6 feature groups were extracted from NECT. We applied 11 feature selection methods to select informative features from each feature group. Selected radiomics features and the clinical feature age were then used to fit machine learning classifiers. In combination of the 11 feature selection methods and 8 classifiers, we constructed 88 predictive models. Predictive models were evaluated and the optimal one was selected and evaluated. The selected radiomics model was RELF_Ada, which was trained with Adaboost classifier and features selected by Relief method. Cross-validated area under the curve (AUC) on training dataset was 0.988 and the relative standard deviation (RSD%) was 0.062. AUC on the test dataset was 0.957. Accuracy (ACC), sensitivity, specificity, positive prediction value (PPV), and negative predictive value (NPV) were 0.926, 0.889, 0.937, 0.800, and 0.967, respectively. Machine learning models with radiomics features extracted from NECT scan accurately discriminated AVM-related intraparenchymal hematomas from those caused by other etiologies. This technique provided a fast, non-invasive approach without use of contrast to diagnose this disease. • Radiomics features from non-contrast-enhanced CT accurately discriminated AVM-related hematomas from those caused by other etiologies. • AVM-related hematomas tended to be larger in diameter, coarser in texture, and more heterogeneous in composition. • Adaboost classifier is an efficient approach for analyzing radiomics features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助怕孤单的易形采纳,获得10
1秒前
xiaotian完成签到,获得积分20
1秒前
1秒前
2秒前
啦啦啦发布了新的文献求助10
2秒前
稳重奇异果应助段鹏鹏采纳,获得10
3秒前
3秒前
禾口王关注了科研通微信公众号
4秒前
5秒前
xiaotian发布了新的文献求助10
5秒前
6秒前
6秒前
617499818完成签到,获得积分10
6秒前
倩倩呀发布了新的文献求助10
7秒前
8秒前
大模型应助槿木采纳,获得10
9秒前
天天快乐应助Rgly采纳,获得10
9秒前
9秒前
10秒前
cheney完成签到,获得积分10
10秒前
阿龙发布了新的文献求助10
11秒前
11秒前
che应助科研路漫漫采纳,获得10
12秒前
12秒前
情怀应助拓拓采纳,获得10
12秒前
小二郎应助这个郭我背了采纳,获得10
12秒前
13秒前
kk发布了新的文献求助10
13秒前
13秒前
13秒前
quandvous完成签到 ,获得积分10
13秒前
13秒前
S77发布了新的文献求助10
13秒前
13秒前
小疯狗发布了新的文献求助30
13秒前
科研通AI5应助李大俊采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得30
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3684731
求助须知:如何正确求助?哪些是违规求助? 3235674
关于积分的说明 9822114
捐赠科研通 2947437
什么是DOI,文献DOI怎么找? 1616223
邀请新用户注册赠送积分活动 763491
科研通“疑难数据库(出版商)”最低求助积分说明 737904