Exosome Classification by Pattern Analysis of Surface-Enhanced Raman Spectroscopy Data for Lung Cancer Diagnosis

外体 微泡 化学 肺癌 表面增强拉曼光谱 拉曼光谱 癌症转移 诊断生物标志物 转移 癌症 癌症研究 病理 拉曼散射 小RNA 生物标志物 内科学 生物化学 生物 医学 光学 物理 基因
作者
Jaena Park,Miyeon Hwang,Byeonghyeon Choi,Hyesun Jeong,Jik Han Jung,Hyun Koo Kim,Sunghoi Hong,Ji Ho Park,Yeonho Choi
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:89 (12): 6695-6701 被引量:183
标识
DOI:10.1021/acs.analchem.7b00911
摘要

Owing to the role of exosome as a cargo for intercellular communication, especially in cancer metastasis, the evidence has been consistently accumulated that exosomes can be used as a noninvasive indicator of cancer. Consequently, several studies applying exosome have been proposed for cancer diagnostic methods such as ELISA assay. However, it has been still challenging to get reliable results due to the requirement of a labeling process and high concentration of exosome. Here, we demonstrate a label-free and highly sensitive classification method of exosome by combining surface-enhanced Raman scattering (SERS) and statistical pattern analysis. Unlike the conventional method to read different peak positions and amplitudes of a spectrum, whole SERS spectra of exosomes were analyzed by principal component analysis (PCA). By employing this pattern analysis, lung cancer cell derived exosomes were clearly distinguished from normal cell derived exosomes by 95.3% sensitivity and 97.3% specificity. Moreover, by analyzing the PCA result, we could suggest that this difference was induced by 11 different points in SERS signals from lung cancer cell derived exosomes. This result paved the way for new real-time diagnosis and classification of lung cancer by using exosome as a cancer marker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
天很蓝完成签到,获得积分10
1秒前
102完成签到,获得积分10
1秒前
csr发布了新的文献求助10
1秒前
1秒前
lslfreedom发布了新的文献求助10
2秒前
jinjin发布了新的文献求助10
2秒前
无限鲜花发布了新的文献求助10
2秒前
慕青应助西番雅采纳,获得10
3秒前
科目三应助pierresun采纳,获得10
3秒前
科研通AI5应助ZJU采纳,获得10
3秒前
希望天下0贩的0应助waiting采纳,获得10
4秒前
Orange应助嘚嘚采纳,获得10
4秒前
tsuki完成签到,获得积分10
4秒前
qingqingiqng发布了新的文献求助10
4秒前
Anna完成签到,获得积分10
5秒前
5秒前
bkagyin应助今天吃草采纳,获得10
5秒前
辛勤尔冬完成签到,获得积分10
5秒前
共享精神应助阿深采纳,获得20
6秒前
march发布了新的文献求助10
6秒前
梦想飞翔发布了新的文献求助10
7秒前
7秒前
绝世镜天完成签到 ,获得积分10
7秒前
8秒前
Underoos完成签到,获得积分10
8秒前
nanlinhua完成签到,获得积分10
8秒前
张桓完成签到,获得积分10
8秒前
Om完成签到,获得积分10
10秒前
Hsia完成签到,获得积分10
11秒前
11秒前
深情安青应助udye采纳,获得10
12秒前
JamesPei应助udye采纳,获得10
12秒前
Lucas应助udye采纳,获得10
12秒前
无限鲜花完成签到,获得积分20
12秒前
13秒前
sundial发布了新的文献求助10
13秒前
SOBER发布了新的文献求助10
13秒前
Akim应助QQ采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563859
求助须知:如何正确求助?哪些是违规求助? 3137060
关于积分的说明 9420785
捐赠科研通 2837499
什么是DOI,文献DOI怎么找? 1559874
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717187