Content Complexity, Similarity, and Consistency in Social Media: A Deep Learning Approach

社会化媒体 相似性(几何) 一致性(知识库) 计算机科学 人工智能 心理学 情报检索 万维网 图像(数学)
作者
Donghyuk Shin,Shu He,Gene Moo Lee,Andrew B. Whinston,Suleyman Cetintas,Kuang-Chih Lee
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:3
标识
DOI:10.2139/ssrn.2830377
摘要

This research methods article proposes a visual data analytics framework to enhance social media research using deep learning models. Drawing on the literature of information systems and marketing, complemented with data-driven methods, we propose a number of visual and textual content features including complexity, similarity, and consistency measures that can play important roles in the persuasiveness of social media content. We then employ state-of-the-art machine learning approaches such as deep learning and text mining to operationalize these new content features in a scalable and systematic manner. For the newly developed features, we validate them against human coders on Amazon Mechanical Turk. Furthermore, we conduct two case studies with a large social media dataset from Tumblr to show the effectiveness of the proposed content features. The first case study demonstrates that both theoretically motivated and data-driven features significantly improve the model’s power to predict the popularity of a post, and the second one highlights the relationships between content features and consumer evaluations of the corresponding posts. The proposed research framework illustrates how deep learning methods can enhance the analysis of unstructured visual and textual data for social media research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿豆汁发布了新的文献求助10
1秒前
小词发布了新的文献求助10
1秒前
1秒前
畅畅发布了新的文献求助10
2秒前
3秒前
忧伤的井发布了新的文献求助10
3秒前
Hungrylunch应助lyx采纳,获得20
3秒前
4秒前
4秒前
www完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
赘婿应助科研废柴采纳,获得10
6秒前
范范778完成签到 ,获得积分10
6秒前
斯文败类应助大气的谷梦采纳,获得10
7秒前
研友_kngjrL发布了新的文献求助10
7秒前
友好的平文应助Wink14551采纳,获得10
8秒前
搜集达人应助Genius采纳,获得10
8秒前
8秒前
9秒前
charry发布了新的文献求助10
9秒前
9秒前
9秒前
Reginannnn发布了新的文献求助10
9秒前
10秒前
科研通AI5应助忧伤的井采纳,获得10
10秒前
10秒前
10秒前
斯文败类应助大聪明采纳,获得10
11秒前
11秒前
12秒前
王杰关注了科研通微信公众号
12秒前
义气冷菱发布了新的文献求助10
12秒前
QiaoHL发布了新的文献求助10
12秒前
追寻的续完成签到 ,获得积分10
12秒前
12秒前
Jan完成签到,获得积分10
12秒前
lu发布了新的文献求助10
13秒前
毒翼完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453