Temporal Feature-Based Classification Into Myocardial Infarction and Other CVDs Merging CNN and Bi-LSTM From ECG Signal

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 心肌梗塞 特征提取 特征(语言学) 冗余(工程) 二元分类 支持向量机 内科学 医学 语言学 操作系统 哲学
作者
Monisha Dey,Nuzaer Omar,Muhammad Ahsan Ullah
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21688-21695 被引量:35
标识
DOI:10.1109/jsen.2021.3079241
摘要

Heart attack else wise termed as myocardial infarction (MI) causes irreparable death of cardiac muscles yielding the focal reason for most casualties among all cardiovascular diseases (CVDs'). A 12-lead electrocardiogram (ECG) generally depicts cardiac abnormalities and so customary deep learning (DL) approaches use the whole signal for binary detection purposes, that is separating healthy control (HC), and MI classes. This paper proposes an alternative approach where 21 temporal features in lieu of the temporal signal are collected from the 12 lead data to reduce redundancy and class imbalance keeping the vital information intact. Then these extracted features are fed into a detection model consisting of a one dimensional (1-D) convolutional neural network (CNN) and a bidirectional long short-term memory (bi-LSTM) layer which classifies into three classes, namely: HC, MI, and non-myocardial infarction (non-MI) subjects for a realistic and reliable assessment. The model's performance is evaluated using 517 records acquired from the Physikalisch-Technische Bundesanstalt (PTB) database and a state-of-art overall accuracy of 99.246%, kappa of 0.983, and macro averaged F1 score of 98.86% were achieved using stratified 5-fold cross-validation. DL methods suffer to make unbiased decisions in the case of class imbalance due to an insufficient amount of data for a particular class and thus temporal features are employed to inherently reduce this problem. The successful performance of the extracted features depends on the precise detection of fiducial points, and so multiple novel algorithms have been introduced in this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助史莱莱莱姆采纳,获得10
2秒前
21完成签到,获得积分10
2秒前
2秒前
4秒前
多多完成签到,获得积分10
4秒前
DE2022发布了新的文献求助10
7秒前
科研通AI5应助鱼脑冻采纳,获得30
8秒前
小二郎应助YQT采纳,获得10
9秒前
隐形曼青应助大恶魔宝拉采纳,获得10
9秒前
许中原完成签到,获得积分10
9秒前
10秒前
10秒前
乐乐应助yhz_zjut_suda采纳,获得10
12秒前
受伤哈密瓜完成签到 ,获得积分10
12秒前
Maxine完成签到 ,获得积分10
13秒前
lbt1686666完成签到,获得积分10
13秒前
13秒前
FIN应助HJJHJH采纳,获得30
14秒前
zhzh0618发布了新的文献求助10
15秒前
科研通AI5应助DE2022采纳,获得10
15秒前
16秒前
赘婿应助陈梦鼠采纳,获得10
16秒前
Tatw完成签到 ,获得积分10
19秒前
syan完成签到,获得积分10
20秒前
21秒前
21秒前
科目三应助酷炫小笼包采纳,获得10
23秒前
华仔应助健忘煎蛋采纳,获得10
23秒前
科研通AI5应助8D采纳,获得30
23秒前
大树爱树懒完成签到,获得积分10
23秒前
23秒前
xxxlglm发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
卿筠完成签到,获得积分10
27秒前
深情安青应助美好斓采纳,获得10
27秒前
LZY完成签到,获得积分10
27秒前
28秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491062
求助须知:如何正确求助?哪些是违规求助? 3077779
关于积分的说明 9150152
捐赠科研通 2770160
什么是DOI,文献DOI怎么找? 1520088
邀请新用户注册赠送积分活动 704504
科研通“疑难数据库(出版商)”最低求助积分说明 702196