Temporal Feature-Based Classification Into Myocardial Infarction and Other CVDs Merging CNN and Bi-LSTM From ECG Signal

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 深度学习 心肌梗塞 特征提取 特征(语言学) 冗余(工程) 二元分类 支持向量机 内科学 医学 语言学 哲学 操作系统
作者
Monisha Dey,Nuzaer Omar,Muhammad Ahsan Ullah
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (19): 21688-21695 被引量:35
标识
DOI:10.1109/jsen.2021.3079241
摘要

Heart attack else wise termed as myocardial infarction (MI) causes irreparable death of cardiac muscles yielding the focal reason for most casualties among all cardiovascular diseases (CVDs'). A 12-lead electrocardiogram (ECG) generally depicts cardiac abnormalities and so customary deep learning (DL) approaches use the whole signal for binary detection purposes, that is separating healthy control (HC), and MI classes. This paper proposes an alternative approach where 21 temporal features in lieu of the temporal signal are collected from the 12 lead data to reduce redundancy and class imbalance keeping the vital information intact. Then these extracted features are fed into a detection model consisting of a one dimensional (1-D) convolutional neural network (CNN) and a bidirectional long short-term memory (bi-LSTM) layer which classifies into three classes, namely: HC, MI, and non-myocardial infarction (non-MI) subjects for a realistic and reliable assessment. The model's performance is evaluated using 517 records acquired from the Physikalisch-Technische Bundesanstalt (PTB) database and a state-of-art overall accuracy of 99.246%, kappa of 0.983, and macro averaged F1 score of 98.86% were achieved using stratified 5-fold cross-validation. DL methods suffer to make unbiased decisions in the case of class imbalance due to an insufficient amount of data for a particular class and thus temporal features are employed to inherently reduce this problem. The successful performance of the extracted features depends on the precise detection of fiducial points, and so multiple novel algorithms have been introduced in this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助西子采纳,获得10
2秒前
2秒前
yaoyao发布了新的文献求助10
3秒前
3秒前
yijibaoli完成签到 ,获得积分10
4秒前
4秒前
及禾发布了新的文献求助10
4秒前
研友_n2Qv2L发布了新的文献求助10
4秒前
5秒前
7788完成签到,获得积分10
6秒前
FyD关闭了FyD文献求助
7秒前
7秒前
wch发布了新的文献求助10
7秒前
8秒前
瞿绝悟发布了新的文献求助10
8秒前
沉静飞雪完成签到,获得积分10
8秒前
8秒前
聂珩发布了新的文献求助10
8秒前
8秒前
寒冷的书白完成签到,获得积分20
9秒前
橙子发布了新的文献求助10
10秒前
Lucas应助李里哩采纳,获得10
10秒前
腼腆的初蓝完成签到,获得积分10
11秒前
12秒前
wz关注了科研通微信公众号
12秒前
狐妖完成签到,获得积分10
13秒前
wwwwww发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
辛勤秋双发布了新的文献求助20
14秒前
科目三应助亮仔采纳,获得10
14秒前
眯眯眼的小懒虫完成签到,获得积分10
15秒前
15秒前
董钰婷完成签到,获得积分10
15秒前
尊敬的惠发布了新的文献求助80
15秒前
15秒前
萝卜干完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082