一般化
数理经济学
哲学
数学
认识论
牙石(牙科)
医学
牙科
作者
Ömer Avcı,Ömer Talip Akalın,Faruk Avcı,Halil Salih Orhan
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:1
标识
DOI:10.48550/arxiv.2105.03673
摘要
Apollonius of Perga, showed that for two given points $A,B$ in the Euclidean plane and a positive real number $k\neq 1$, geometric locus of the points $X$ that satisfies the equation $|XA|=k|XB|$ is a circle. This circle is called Apollonius circle. In this paper we generalize the definition of the Apollonius circle for two given circles $Γ_1,Γ_2$ and we show that geometric locus of the points $X$ with the ratio of the power with respect to the circles $Γ_1,Γ_2$ is constant, is also a circle. Using this we generalize the definition of Apollonius Circle, and generalize some results about Apollonius Circle.
科研通智能强力驱动
Strongly Powered by AbleSci AI