A Generalized Voronoi Diagram-Based Efficient Heuristic Path Planning Method for RRTs in Mobile Robots

运动规划 沃罗诺图 启发式 计算机科学 特征(语言学) 任意角度路径规划 移动机器人 人工智能 算法 特征提取 数学优化 机器人 数学 几何学 哲学 语言学
作者
Wenzheng Chi,Zhiyu Ding,Jiankun Wang,Guodong Chen,Lining Sun
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 4926-4937 被引量:110
标识
DOI:10.1109/tie.2021.3078390
摘要

The rapidly exploring random tree and its variants (RRTs) have been widely adopted as the motion planning algorithms for mobile robots. However, the trap space problem, such as mazes and S-shaped corridors, hinders their planning efficiency. In this article, we present a generalized Voronoi diagram (GVD)-based heuristic path planning algorithm to generate a heuristic path, guide the sampling process of RRTs, and further improve the motion planning efficiency of RRTs. Different from other heuristic algorithms that only work in certain environments or depend on specified parameter setting, the proposed algorithm can automatically identify the environment feature and provide a reasonable heuristic path. First, the given environment is initialized with a lightweight feature extraction from the GVD, which guarantees that any state in the free space can be connected to the feature graph without any collision. Second, to remove the redundancy of feature nodes, a feature matrix is proposed to represent connections among feature nodes and a corresponding feature node fusion technique is utilized to delete the redundant nodes. Third, based on the GVD feature matrix, a heuristic path planning algorithm is presented. This heuristic path is then used to guide the sampling process of RRTs and achieve real-time motion planning. The proposed GVD feature matrix can be also utilized to improve the efficiency of the replanning. Through a series of simulation studies and real-world implementations, it is confirmed that the proposed algorithm achieves better performance in heuristic path planning, feature extraction of free space, and real-time motion planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paul发布了新的文献求助10
1秒前
2秒前
MEME发布了新的文献求助10
5秒前
5秒前
情怀应助LSH970829采纳,获得10
5秒前
CHINA_C13发布了新的文献求助10
8秒前
Mars发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
玛卡巴卡应助平常的毛豆采纳,获得100
10秒前
默默的青旋完成签到,获得积分10
11秒前
14秒前
搜集达人应助淡淡采白采纳,获得10
14秒前
高高代珊完成签到 ,获得积分10
15秒前
gmc发布了新的文献求助10
16秒前
16秒前
17秒前
善学以致用应助Mian采纳,获得10
17秒前
学科共进发布了新的文献求助60
18秒前
LWJ完成签到 ,获得积分10
18秒前
18秒前
缓慢的糖豆完成签到,获得积分10
19秒前
阉太狼完成签到,获得积分10
19秒前
20秒前
soory完成签到,获得积分10
21秒前
任性的傲柏完成签到,获得积分10
21秒前
lwk205完成签到,获得积分0
21秒前
22秒前
一一完成签到,获得积分10
22秒前
22秒前
22秒前
高中生完成签到,获得积分10
23秒前
23秒前
23秒前
希望天下0贩的0应助TT采纳,获得10
24秒前
xxegt完成签到 ,获得积分10
24秒前
25秒前
爱吃泡芙发布了新的文献求助10
25秒前
susu完成签到,获得积分10
27秒前
会神发布了新的文献求助10
27秒前
KK完成签到,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824