电渗析
膜
离子交换
化学
离子交换膜
化学工程
色谱法
离子
有机化学
生物化学
工程类
作者
Adam Uliana,N. Bui,Jovan Kamcev,Mercedes K. Taylor,Jeffrey J. Urban,Jeffrey R. Long
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2021-04-15
卷期号:372 (6539): 296-299
被引量:206
标识
DOI:10.1126/science.abf5991
摘要
Technologies that can efficiently purify nontraditional water sources are needed to meet rising global demand for clean water. Water treatment plants typically require a series of costly separation units to achieve desalination and the removal of toxic trace contaminants such as heavy metals and boron. We report a series of robust, selective, and tunable adsorptive membranes that feature porous aromatic framework nanoparticles embedded within ion exchange polymers and demonstrate their use in an efficient, one-step separation strategy termed ion-capture electrodialysis. This process uses electrodialysis configurations with adsorptive membranes to simultaneously desalinate complex water sources and capture diverse target solutes with negligible capture of competing ions. Our methods are applicable to the development of efficient and selective multifunctional separations that use adsorptive membranes.
科研通智能强力驱动
Strongly Powered by AbleSci AI