Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning

医学 乳腺癌 超声波 放射科 前瞻性队列研究 计算机科学 人工智能 癌症 医学物理学 外科 内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lü,K. Kirk Shung
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 522-532 被引量:229
标识
DOI:10.1038/s41551-021-00711-2
摘要

The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩韩完成签到,获得积分10
刚刚
NexusExplorer应助牛0254采纳,获得10
刚刚
1秒前
yznfly应助憨憨的小于采纳,获得20
1秒前
菜菜发布了新的文献求助10
2秒前
完美世界应助awaw采纳,获得10
2秒前
2秒前
晨许沫光完成签到,获得积分10
2秒前
2秒前
稻香茶煦完成签到,获得积分10
2秒前
2秒前
木子李完成签到,获得积分10
3秒前
狗大王发布了新的文献求助30
3秒前
3秒前
神勇的晓灵完成签到,获得积分10
3秒前
3秒前
KONG发布了新的文献求助20
4秒前
5秒前
5秒前
刺槐发布了新的文献求助10
5秒前
5秒前
5秒前
zxc发布了新的文献求助10
6秒前
斯文败类应助JIMMY采纳,获得10
6秒前
7秒前
yike完成签到,获得积分10
7秒前
善学以致用应助liao_duoduo采纳,获得10
7秒前
高高千万发布了新的文献求助20
7秒前
8秒前
8秒前
mensa完成签到,获得积分10
8秒前
Criminology34应助缥缈纸飞机采纳,获得10
8秒前
8秒前
bin发布了新的文献求助10
8秒前
情怀应助赵富贵采纳,获得10
8秒前
图雄争霸完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731