Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning

医学 乳腺癌 超声波 放射科 前瞻性队列研究 计算机科学 人工智能 癌症 医学物理学 外科 内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lü,K. Kirk Shung
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 522-532 被引量:223
标识
DOI:10.1038/s41551-021-00711-2
摘要

The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支雨泽发布了新的文献求助10
1秒前
烟花应助TulIP采纳,获得10
2秒前
辛勤的小熊猫完成签到,获得积分10
2秒前
粥粥粥完成签到,获得积分20
3秒前
queer完成签到,获得积分10
3秒前
天行马完成签到,获得积分10
3秒前
juphen2发布了新的文献求助10
4秒前
芜湖起飞完成签到 ,获得积分10
5秒前
wang完成签到,获得积分10
6秒前
6秒前
zhangj696完成签到,获得积分10
7秒前
Xavier完成签到,获得积分10
8秒前
洁净的黑米完成签到,获得积分10
9秒前
圈圈应助科研通管家采纳,获得10
9秒前
xz应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
smottom应助科研通管家采纳,获得10
10秒前
iVANPENNY应助科研通管家采纳,获得10
10秒前
老刀完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
跳跃的迎荷完成签到 ,获得积分10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
英姑应助科研通管家采纳,获得10
10秒前
小黑鼠完成签到 ,获得积分10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
小白应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得50
10秒前
smottom应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
iVANPENNY应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806