已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning

医学 乳腺癌 超声波 放射科 前瞻性队列研究 计算机科学 人工智能 癌症 医学物理学 外科 内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lü,K. Kirk Shung
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 522-532 被引量:223
标识
DOI:10.1038/s41551-021-00711-2
摘要

The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
siste发布了新的文献求助10
3秒前
3秒前
4秒前
kkk关注了科研通微信公众号
4秒前
5秒前
黎明发布了新的文献求助10
7秒前
KK发布了新的文献求助10
8秒前
UU完成签到,获得积分10
8秒前
8秒前
8秒前
WNing发布了新的文献求助10
9秒前
9秒前
10秒前
siste完成签到,获得积分20
11秒前
13秒前
faye发布了新的文献求助10
13秒前
edc发布了新的文献求助10
15秒前
lucky发布了新的文献求助10
15秒前
怡然的红酒完成签到,获得积分20
17秒前
maguodrgon发布了新的文献求助10
18秒前
五十完成签到 ,获得积分10
19秒前
斯文明杰发布了新的文献求助10
19秒前
正直的雪糕完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
20秒前
21秒前
22秒前
22秒前
changliu发布了新的文献求助10
22秒前
22秒前
23秒前
邓佳鑫Alan应助冷艳的初露采纳,获得10
23秒前
24秒前
25秒前
P16发布了新的文献求助10
25秒前
JJy发布了新的文献求助30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481948
求助须知:如何正确求助?哪些是违规求助? 4582876
关于积分的说明 14387479
捐赠科研通 4511752
什么是DOI,文献DOI怎么找? 2472560
邀请新用户注册赠送积分活动 1458791
关于科研通互助平台的介绍 1432218