Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning

医学 乳腺癌 超声波 放射科 前瞻性队列研究 计算机科学 人工智能 癌症 医学物理学 外科 内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lü,K. Kirk Shung
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 522-532 被引量:223
标识
DOI:10.1038/s41551-021-00711-2
摘要

The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南也关注了科研通微信公众号
刚刚
懒癌晚期完成签到,获得积分10
1秒前
1秒前
Hin66完成签到,获得积分20
2秒前
2秒前
2秒前
orixero应助hmj采纳,获得10
3秒前
能干的邹发布了新的文献求助10
4秒前
5秒前
何意味完成签到 ,获得积分10
6秒前
水木年华发布了新的文献求助10
6秒前
8秒前
8秒前
彭于晏应助欣喜的尔曼采纳,获得10
8秒前
9秒前
木又权完成签到,获得积分10
10秒前
能干的邹完成签到,获得积分10
10秒前
善学以致用应助艾原采纳,获得10
10秒前
科研通AI6应助任成艳采纳,获得10
10秒前
岳拔萃发布了新的文献求助10
11秒前
茉莉完成签到,获得积分10
11秒前
11秒前
白雪阁发布了新的文献求助10
12秒前
12秒前
Kyrie完成签到,获得积分10
12秒前
卞珂完成签到,获得积分10
13秒前
holiday发布了新的文献求助20
13秒前
不想做实验完成签到,获得积分10
13秒前
13秒前
科研通AI6应助笑点低的悒采纳,获得10
14秒前
14秒前
豆沙包完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
张兰兰发布了新的文献求助10
16秒前
Min完成签到,获得积分10
17秒前
17秒前
思哲范发布了新的文献求助10
18秒前
Yh_L发布了新的文献求助10
18秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300