医学
乳腺癌
乳房成像
超声波
乳腺摄影术
放射科
乳腺超声检查
前瞻性队列研究
接收机工作特性
恶性肿瘤
计算机科学
置信区间
双雷达
乳腺活检
深度学习
人工智能
癌症
外科
内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lu,K. Kirk Shung
标识
DOI:10.1038/s41551-021-00711-2
摘要
The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
科研通智能强力驱动
Strongly Powered by AbleSci AI