亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning

医学 乳腺癌 超声波 放射科 前瞻性队列研究 计算机科学 人工智能 癌症 医学物理学 外科 内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lü,K. Kirk Shung
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:5 (6): 522-532 被引量:223
标识
DOI:10.1038/s41551-021-00711-2
摘要

The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
28秒前
Jerry发布了新的文献求助10
34秒前
42秒前
44秒前
gexzygg发布了新的文献求助10
45秒前
哲别发布了新的文献求助10
48秒前
张鑫完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
笨笨的发布了新的文献求助10
2分钟前
领导范儿应助现代小笼包采纳,获得10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
笨笨的完成签到,获得积分10
2分钟前
李志全完成签到 ,获得积分10
2分钟前
3分钟前
浪里白条完成签到 ,获得积分10
3分钟前
浪里白条关注了科研通微信公众号
3分钟前
3分钟前
Benhnhk21完成签到,获得积分10
3分钟前
3分钟前
冷酷的苗条完成签到 ,获得积分10
4分钟前
徐甜完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
小张同学完成签到,获得积分10
5分钟前
5分钟前
月下荷花完成签到 ,获得积分10
6分钟前
6分钟前
打打应助Elen1987采纳,获得10
6分钟前
6分钟前
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
传奇3应助渔樵采纳,获得10
6分钟前
6分钟前
雅雅完成签到 ,获得积分10
6分钟前
依旧完成签到 ,获得积分10
6分钟前
宝宝完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538716
求助须知:如何正确求助?哪些是违规求助? 4625787
关于积分的说明 14596894
捐赠科研通 4566449
什么是DOI,文献DOI怎么找? 2503314
邀请新用户注册赠送积分活动 1481402
关于科研通互助平台的介绍 1452780