Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning

医学 乳腺癌 超声波 放射科 前瞻性队列研究 计算机科学 人工智能 癌症 医学物理学 外科 内科学
作者
Xuejun Qian,Jing Pei,Hui Zheng,Xinxin Xie,Yan Lin,Hao Zhang,Chunguang Han,Xiang Gao,Hanqi Zhang,Weiwei Zheng,Qiang Sun,Lu Lu,K. Kirk Shung
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:5 (6): 522-532 被引量:196
标识
DOI:10.1038/s41551-021-00711-2
摘要

The clinical application of breast ultrasound for the assessment of cancer risk and of deep learning for the classification of breast-ultrasound images has been hindered by inter-grader variability and high false positive rates and by deep-learning models that do not follow Breast Imaging Reporting and Data System (BI-RADS) standards, lack explainability features and have not been tested prospectively. Here, we show that an explainable deep-learning system trained on 10,815 multimodal breast-ultrasound images of 721 biopsy-confirmed lesions from 634 patients across two hospitals and prospectively tested on 912 additional images of 152 lesions from 141 patients predicts BI-RADS scores for breast cancer as accurately as experienced radiologists, with areas under the receiver operating curve of 0.922 (95% confidence interval (CI) = 0.868–0.959) for bimodal images and 0.955 (95% CI = 0.909–0.982) for multimodal images. Multimodal multiview breast-ultrasound images augmented with heatmaps for malignancy risk predicted via deep learning may facilitate the adoption of ultrasound imaging in screening mammography workflows. An explainable deep-learning system prospectively predicts clinical scores for breast cancer risk from multimodal breast-ultrasound images as accurately as experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
wwwww发布了新的文献求助10
1秒前
范苏茂完成签到,获得积分20
2秒前
hyacinth11111发布了新的文献求助20
3秒前
4秒前
5秒前
5秒前
LAN发布了新的文献求助10
5秒前
Rita发布了新的文献求助10
6秒前
亦绿完成签到,获得积分10
6秒前
张奎发布了新的文献求助10
8秒前
俊逸成危完成签到,获得积分10
9秒前
陈洋_复旦大学完成签到,获得积分10
9秒前
9秒前
gmp完成签到,获得积分20
9秒前
9秒前
去看海嘛发布了新的文献求助10
10秒前
英俊的铭应助十四采纳,获得10
10秒前
11秒前
12秒前
orixero应助ychen采纳,获得10
13秒前
13秒前
cc发布了新的文献求助10
13秒前
13秒前
CipherSage应助张奎采纳,获得10
16秒前
我爱大肠发布了新的文献求助10
16秒前
tianhaizhi发布了新的文献求助10
17秒前
贪玩的访风完成签到 ,获得积分10
17秒前
18秒前
19秒前
WZQ发布了新的文献求助10
19秒前
20秒前
InSea完成签到,获得积分10
21秒前
huxiao发布了新的文献求助30
22秒前
股份我发布了新的文献求助10
22秒前
郝富完成签到,获得积分10
22秒前
gmp关注了科研通微信公众号
22秒前
星辰大海应助健康的傲白采纳,获得10
23秒前
Lcy0609完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159157
求助须知:如何正确求助?哪些是违规求助? 4353699
关于积分的说明 13556582
捐赠科研通 4197328
什么是DOI,文献DOI怎么找? 2302011
邀请新用户注册赠送积分活动 1302035
关于科研通互助平台的介绍 1247140