膜
层状结构
材料科学
化学工程
润湿
堆积
渗透
共价键
纳米技术
自组装
高分子化学
化学
复合材料
有机化学
渗透
工程类
生物化学
作者
Jin Li,Tiantian Li,Xiaodong Ma,Zhilong Su,Jie Yin,Xuesong Jiang
出处
期刊:Macromolecules
[American Chemical Society]
日期:2021-04-21
卷期号:54 (9): 4423-4431
被引量:7
标识
DOI:10.1021/acs.macromol.1c00056
摘要
The recent development of 2D lamellar membranes may lead to the next generation of membrane processes for molecular separation, but smart regulation of substance permeability has rarely been reported for the challenge of precise regulation of the interlayer spacing (d-spacing). Here 2D lamellar polymeric membranes with reversible thermoresponsive nanogating regularity are constructed by regular stacking of poly(N-isopropylacrylamide) (PNIPAM) brushes covalently grafted hybrid nanosheets (HNS-P). HNS-P were formed under precise molecular engineering of in situ surface-initiated photopolymerization of NIPAM on the surface of hybrid nanosheets (HNS), which were fabricated by crystal-driven self-assembly. The uniform, square HNS-P with a tunable PNIPAM brush made it possible to obtain a highly ordered lamellar membrane and enhance the interfacial compatibility of the sheets for the membrane. Moreover, the interspace tunability generated by adjusting the environment temperature or the surface grafting ratio of PNIPAM brushes endowed the membrane with a high gating ratio (∼8.5) of water permeance and the ability to separate multiple gradient molecules of different sizes. This integrated assembly strategy provides insight into the formation of 2D lamellar polymeric membranes and expands the scope of smart gating membranes, showing promising applications in micro/nanofluidics and molecular separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI