Statistical Learning of Facial Expressions Improves Realism of Animated Avatar Faces

动画 计算机科学 面子(社会学概念) 计算机人脸动画 人工智能 计算机动画
作者
Carl Martin Grewe,Tuo Liu,Christoph Kahl,Andrea Hildebrandt,Stefan Zachow
出处
期刊:Frontiers in virtual reality [Frontiers Media SA]
卷期号:2 被引量:8
标识
DOI:10.3389/frvir.2021.619811
摘要

A high realism of avatars is beneficial for virtual reality experiences such as avatar-mediated communication and embodiment. Previous work, however, suggested that the usage of realistic virtual faces can lead to unexpected and undesired effects, including phenomena like the uncanny valley. This work investigates the role of photographic and behavioral realism of avatars with animated facial expressions on perceived realism and congruence ratings. More specifically, we examine ratings of photographic and behavioral realism and their mismatch in differently created avatar faces. Furthermore, we utilize these avatars to investigate the effect of behavioral realism on perceived congruence between video-recorded physical person’s expressions and their imitations by the avatar. We compared two types of avatars, both with four identities that were created from the same facial photographs. The first type of avatars contains expressions that were designed by an artistic expert. The second type contains expressions that were statistically learned from a 3D facial expression database. Our results show that the avatars containing learned facial expressions were rated more photographically and behaviorally realistic and possessed a lower mismatch between the two dimensions. They were also perceived as more congruent to the video-recorded physical person’s expressions. We discuss our findings and the potential benefit of avatars with learned facial expressions for experiences in virtual reality and future research on enfacement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ured发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
fogsea发布了新的文献求助10
3秒前
春日防卫队Fire完成签到,获得积分10
4秒前
money发布了新的文献求助10
4秒前
5秒前
赢赢完成签到 ,获得积分10
5秒前
5秒前
bofu发布了新的文献求助20
7秒前
9秒前
9秒前
Zoe发布了新的文献求助30
10秒前
跳跃碧灵发布了新的文献求助10
10秒前
11秒前
云栈出谷发布了新的文献求助10
14秒前
搬砖的化学男应助sgssm采纳,获得10
16秒前
bofu发布了新的文献求助20
17秒前
qwe发布了新的文献求助10
18秒前
传奇3应助跳跃碧灵采纳,获得30
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
20秒前
不配.应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
20秒前
不配.应助科研通管家采纳,获得10
20秒前
科研通AI2S应助杨九斤Jenney采纳,获得10
21秒前
热爱生活的小彭完成签到,获得积分20
23秒前
腐殖酸发布了新的文献求助10
25秒前
孤独梦曼发布了新的文献求助10
26秒前
科研通AI2S应助qwe采纳,获得10
28秒前
30秒前
31秒前
ycw123完成签到,获得积分20
32秒前
35秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124565
求助须知:如何正确求助?哪些是违规求助? 2774891
关于积分的说明 7724521
捐赠科研通 2430358
什么是DOI,文献DOI怎么找? 1291087
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297