Prediction of bleb formation in intracranial aneurysms using machine learning models based on aneurysm hemodynamics, geometry, location, and patient population

泡(药) 医学 动脉瘤 人口 人工智能 随机森林 血流动力学 机器学习 放射科 几何学 数学 计算机科学 眼科 内科学 青光眼 环境卫生 小梁切除术
作者
Seyedeh Fatemeh Salimi Ashkezari,Fernando Mut,Martin Slawski,Boyle C. Cheng,Alexander Yu,Tim G White,Henry H. Woo,Matthew J. Koch,Sepideh Amin‐Hanjani,Fady T. Charbel,Behnam Rezai Jahromi,Mika Niemelä,Timo Koivisto,Juhana Frösén,Yasutaka Tobe,Spandan Maiti,Anne M. Robertson,Juan R. Cebral
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:14 (10): 1002-1007 被引量:6
标识
DOI:10.1136/neurintsurg-2021-017976
摘要

Bleb presence in intracranial aneurysms (IAs) is a known indication of instability and vulnerability.To develop and evaluate predictive models of bleb development in IAs based on hemodynamics, geometry, anatomical location, and patient population.Cross-sectional data (one time point) of 2395 IAs were used for training bleb formation models using machine learning (random forest, support vector machine, logistic regression, k-nearest neighbor, and bagging). Aneurysm hemodynamics and geometry were characterized using image-based computational fluid dynamics. A separate dataset with 266 aneurysms was used for model evaluation. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), true positive rate (TPR), false positive rate (FPR), precision, and balanced accuracy.The final model retained 18 variables, including hemodynamic, geometrical, location, multiplicity, and morphology parameters, and patient population. Generally, strong and concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns together with larger, more elongated, and more distorted shapes were associated with bleb formation. The best performance on the validation set was achieved by the random forest model (AUC=0.82, TPR=91%, FPR=36%, misclassification error=27%).Based on the premise that aneurysm characteristics prior to bleb formation resemble those derived from vascular reconstructions with their blebs virtually removed, machine learning models can identify aneurysms prone to bleb development with good accuracy. Pending further validation with longitudinal data, these models may prove valuable for assessing the propensity of IAs to progress to vulnerable states and potentially rupturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助zz采纳,获得10
1秒前
科研通AI6.1应助yichen采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
明理的凡霜完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
7秒前
云那边的山完成签到,获得积分10
7秒前
tf发布了新的文献求助10
8秒前
烟花应助苹果文博采纳,获得10
8秒前
赘婿应助超级的伟泽采纳,获得10
9秒前
默默新波发布了新的文献求助10
10秒前
Frank发布了新的文献求助10
10秒前
10秒前
王土豆发布了新的文献求助10
10秒前
玉Y发布了新的文献求助10
11秒前
11秒前
zz完成签到,获得积分10
11秒前
11秒前
张若愚完成签到 ,获得积分10
12秒前
14秒前
顾矜应助DingZC采纳,获得10
15秒前
研友_8KKmR8发布了新的文献求助10
16秒前
等待的寒松完成签到,获得积分10
17秒前
17秒前
17秒前
leilei发布了新的文献求助10
18秒前
研友_VZG7GZ应助lsq采纳,获得10
19秒前
翁忘幽发布了新的文献求助10
20秒前
Ava应助tf采纳,获得10
20秒前
20秒前
Seamily应助谨慎的寒松采纳,获得10
20秒前
pluto应助谨慎的寒松采纳,获得10
20秒前
pluto应助谨慎的寒松采纳,获得10
20秒前
爆米花应助谨慎的寒松采纳,获得10
20秒前
pluto应助谨慎的寒松采纳,获得10
20秒前
xzy998应助谨慎的寒松采纳,获得10
21秒前
Seamily应助谨慎的寒松采纳,获得200
21秒前
pluto应助谨慎的寒松采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736800
求助须知:如何正确求助?哪些是违规求助? 5368437
关于积分的说明 15334001
捐赠科研通 4880560
什么是DOI,文献DOI怎么找? 2622896
邀请新用户注册赠送积分活动 1571792
关于科研通互助平台的介绍 1528628