Prediction of bleb formation in intracranial aneurysms using machine learning models based on aneurysm hemodynamics, geometry, location, and patient population

泡(药) 医学 动脉瘤 人口 人工智能 随机森林 血流动力学 机器学习 放射科 几何学 数学 计算机科学 眼科 内科学 青光眼 环境卫生 小梁切除术
作者
Seyedeh Fatemeh Salimi Ashkezari,Fernando Mut,Martin Slawski,Boyle C. Cheng,Alexander Yu,Tim G White,Henry H. Woo,Matthew J. Koch,Sepideh Amin‐Hanjani,Fady T. Charbel,Behnam Rezai Jahromi,Mika Niemelä,Timo Koivisto,Juhana Frösén,Yasutaka Tobe,Spandan Maiti,Anne M. Robertson,Juan R. Cebral
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:14 (10): 1002-1007 被引量:6
标识
DOI:10.1136/neurintsurg-2021-017976
摘要

Bleb presence in intracranial aneurysms (IAs) is a known indication of instability and vulnerability.To develop and evaluate predictive models of bleb development in IAs based on hemodynamics, geometry, anatomical location, and patient population.Cross-sectional data (one time point) of 2395 IAs were used for training bleb formation models using machine learning (random forest, support vector machine, logistic regression, k-nearest neighbor, and bagging). Aneurysm hemodynamics and geometry were characterized using image-based computational fluid dynamics. A separate dataset with 266 aneurysms was used for model evaluation. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), true positive rate (TPR), false positive rate (FPR), precision, and balanced accuracy.The final model retained 18 variables, including hemodynamic, geometrical, location, multiplicity, and morphology parameters, and patient population. Generally, strong and concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns together with larger, more elongated, and more distorted shapes were associated with bleb formation. The best performance on the validation set was achieved by the random forest model (AUC=0.82, TPR=91%, FPR=36%, misclassification error=27%).Based on the premise that aneurysm characteristics prior to bleb formation resemble those derived from vascular reconstructions with their blebs virtually removed, machine learning models can identify aneurysms prone to bleb development with good accuracy. Pending further validation with longitudinal data, these models may prove valuable for assessing the propensity of IAs to progress to vulnerable states and potentially rupturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助c程序语言采纳,获得10
3秒前
3秒前
行者无疆发布了新的文献求助10
4秒前
沈格完成签到,获得积分10
4秒前
翻斗花园612完成签到,获得积分10
4秒前
慕子完成签到 ,获得积分10
5秒前
kitty完成签到 ,获得积分10
5秒前
7秒前
12秒前
14秒前
14秒前
小zhu完成签到,获得积分10
15秒前
钟冠完成签到,获得积分10
17秒前
洪山老狗完成签到,获得积分10
19秒前
MOD发布了新的文献求助10
20秒前
脑洞疼应助xiaoxixiccccc采纳,获得10
20秒前
万能图书馆应助Umind采纳,获得10
20秒前
21秒前
Zhou完成签到,获得积分10
21秒前
21秒前
田様应助qiany采纳,获得10
22秒前
c程序语言发布了新的文献求助10
25秒前
冷傲手套完成签到,获得积分20
27秒前
28秒前
28秒前
幸运小狗发布了新的文献求助10
29秒前
chris chen完成签到,获得积分10
29秒前
旭旭完成签到 ,获得积分10
30秒前
钟冠发布了新的文献求助10
30秒前
hanchangcun发布了新的文献求助10
31秒前
奇奇怪怪完成签到 ,获得积分10
33秒前
34秒前
yt发布了新的文献求助10
35秒前
37秒前
宇心完成签到,获得积分10
37秒前
tennisgirl完成签到 ,获得积分10
38秒前
Bonnienuit发布了新的文献求助50
39秒前
bkagyin应助大气的月饼采纳,获得10
40秒前
shouz发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870