Prediction of bleb formation in intracranial aneurysms using machine learning models based on aneurysm hemodynamics, geometry, location, and patient population

泡(药) 医学 动脉瘤 人口 人工智能 随机森林 血流动力学 机器学习 放射科 几何学 数学 计算机科学 眼科 内科学 青光眼 环境卫生 小梁切除术
作者
Seyedeh Fatemeh Salimi Ashkezari,Fernando Mut,Martin Slawski,Boyle C. Cheng,Alexander Yu,Tim G White,Henry H. Woo,Matthew J. Koch,Sepideh Amin‐Hanjani,Fady T. Charbel,Behnam Rezai Jahromi,Mika Niemelä,Timo Koivisto,Juhana Frösén,Yasutaka Tobe,Spandan Maiti,Anne M. Robertson,Juan R. Cebral
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:14 (10): 1002-1007 被引量:6
标识
DOI:10.1136/neurintsurg-2021-017976
摘要

Bleb presence in intracranial aneurysms (IAs) is a known indication of instability and vulnerability.To develop and evaluate predictive models of bleb development in IAs based on hemodynamics, geometry, anatomical location, and patient population.Cross-sectional data (one time point) of 2395 IAs were used for training bleb formation models using machine learning (random forest, support vector machine, logistic regression, k-nearest neighbor, and bagging). Aneurysm hemodynamics and geometry were characterized using image-based computational fluid dynamics. A separate dataset with 266 aneurysms was used for model evaluation. Model performance was quantified by the area under the receiving operating characteristic curve (AUC), true positive rate (TPR), false positive rate (FPR), precision, and balanced accuracy.The final model retained 18 variables, including hemodynamic, geometrical, location, multiplicity, and morphology parameters, and patient population. Generally, strong and concentrated inflow jets, high speed, complex and unstable flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns together with larger, more elongated, and more distorted shapes were associated with bleb formation. The best performance on the validation set was achieved by the random forest model (AUC=0.82, TPR=91%, FPR=36%, misclassification error=27%).Based on the premise that aneurysm characteristics prior to bleb formation resemble those derived from vascular reconstructions with their blebs virtually removed, machine learning models can identify aneurysms prone to bleb development with good accuracy. Pending further validation with longitudinal data, these models may prove valuable for assessing the propensity of IAs to progress to vulnerable states and potentially rupturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳洋完成签到,获得积分10
1秒前
sdhgd应助勤恳的小霸王采纳,获得10
1秒前
1秒前
乐观道之完成签到,获得积分10
2秒前
xc8418完成签到,获得积分10
2秒前
科研通AI2S应助Wangnono采纳,获得10
3秒前
LiAlan发布了新的文献求助10
4秒前
小小付发布了新的文献求助10
4秒前
朴素夜梦发布了新的文献求助10
5秒前
Jia发布了新的文献求助10
5秒前
nini完成签到,获得积分10
7秒前
希望天下0贩的0应助yolo采纳,获得10
9秒前
汉堡包应助小小付采纳,获得10
9秒前
9秒前
9秒前
慕青应助LIYY采纳,获得10
9秒前
英姑应助star采纳,获得10
10秒前
11秒前
太阳发布了新的文献求助10
11秒前
烟花应助Paul采纳,获得10
11秒前
11秒前
阿豆阿豆发布了新的文献求助10
13秒前
皇帝的床帘完成签到,获得积分10
15秒前
躬身入局发布了新的文献求助10
15秒前
15秒前
李健的小迷弟应助LiAlan采纳,获得10
17秒前
17秒前
jiuyuan完成签到,获得积分20
18秒前
19秒前
19秒前
kaww发布了新的文献求助10
19秒前
22秒前
23秒前
seven发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
25秒前
jiuyuan发布了新的文献求助10
25秒前
marongzhi发布了新的文献求助30
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149493
求助须知:如何正确求助?哪些是违规求助? 2800565
关于积分的说明 7840531
捐赠科研通 2458065
什么是DOI,文献DOI怎么找? 1308242
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706