Structural crack detection using deep convolutional neural networks

卷积神经网络 计算机科学 人工智能 图像处理 分割 过程(计算) 深度学习 软件 机器学习 钥匙(锁) 透视图(图形) 人工神经网络 图像(数学) 计算机安全 操作系统 程序设计语言
作者
Ali Raza,Joon Huang Chuah,Mohamad Sofian Abu Talip,Norrima Mokhtar,Muhammad Shoaib
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:133: 103989-103989 被引量:225
标识
DOI:10.1016/j.autcon.2021.103989
摘要

Convolutional Neural Networks (CNN) have immense potential to solve a broad range of computer vision problems. It has achieved encouraging results in numerous applications of engineering, medical, and other research fields due to the advancement in hardware, data collection procedures, and efficient algorithms. These innovations have changed the way how specific problems are solved as compared to conventional methods. This article presents a review of CNN implementation on civil structure crack detection. The review highlights the significant research that has been performed to detect structure cracks through classification and segmentation of crack images with CNN in the perspective of image pre-processing techniques, processing hardware, software tools, datasets, network architectures, learning procedures, loss functions, and network performance. The key contribution of this review article is the study and analysis of the most recent developments on crack detection using CNN. Additionally, this work also presents a discussion on crack detection through a manual process, image processing techniques, and machine learning methods along with their limitations. Finally, this article aims for assisting the readers to understand the motivation and methodology of the various CNN-based crack detection methods and to invoke them for exploring the solutions of challenges outlined in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷鹏煊完成签到,获得积分20
刚刚
鹅鹅鹅发布了新的文献求助10
1秒前
可耐的香露完成签到,获得积分10
1秒前
oligo发布了新的文献求助10
2秒前
爆米花应助饺子采纳,获得10
2秒前
今天要喝椰汁完成签到,获得积分10
2秒前
2秒前
zyy完成签到,获得积分10
3秒前
聪明夏天完成签到,获得积分10
3秒前
寒冷鹏煊发布了新的文献求助10
3秒前
Akim应助KKLD采纳,获得10
4秒前
Hello应助bxg采纳,获得10
4秒前
Tree完成签到,获得积分10
5秒前
兴奋渊思完成签到 ,获得积分10
5秒前
liang发布了新的文献求助10
5秒前
6秒前
7秒前
Hello应助DYZ采纳,获得10
7秒前
李爱国应助yalifeng采纳,获得10
8秒前
9秒前
了凡完成签到 ,获得积分10
9秒前
共享精神应助zhishiyanhua采纳,获得10
9秒前
小郭完成签到,获得积分20
10秒前
宋小七完成签到,获得积分10
10秒前
10秒前
XinG应助糟糕的富采纳,获得10
11秒前
xiaomings007发布了新的文献求助10
11秒前
祥云齐天发布了新的文献求助60
11秒前
12秒前
小郭发布了新的文献求助10
12秒前
卷卷完成签到 ,获得积分10
12秒前
13秒前
zzy发布了新的文献求助10
13秒前
调皮从筠完成签到 ,获得积分10
14秒前
oligo完成签到,获得积分10
14秒前
14秒前
哈哈哈发布了新的文献求助10
14秒前
15秒前
CipherSage应助fuhua采纳,获得10
15秒前
樟脑丸完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652149
求助须知:如何正确求助?哪些是违规求助? 3216345
关于积分的说明 9711716
捐赠科研通 2924156
什么是DOI,文献DOI怎么找? 1601568
邀请新用户注册赠送积分活动 754238
科研通“疑难数据库(出版商)”最低求助积分说明 733002