A two‐stream deep neural network‐based intelligent system for complex skin cancer types classification

人工智能 计算机科学 模式识别(心理学) 多类分类 分类器(UML) 特征选择 人工神经网络 深度学习 皮肤癌 皮肤损伤 支持向量机 癌症 医学 内科学 病理
作者
Muhammad Attique Khan,Muhammad Sharif,Tallha Akram,Seifedine Kadry,Ching‐Hsien Hsu
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (12): 10621-10649 被引量:90
标识
DOI:10.1002/int.22691
摘要

Medical imaging systems installed in different hospitals and labs generate images in bulk, which could support medics to analyze infections or injuries. Manual inspection becomes difficult when there exist more images, therefore, intelligent systems are usually required for real-time diagnosis. Melanoma is one of the most common and severe forms of skin cancer that begins from the cells beneath the skin. Through dermoscopic images, it is possible to diagnose the infection at the early stages. In this regard, different approaches have been exploited for improved results. In this study, we propose a two-stream deep neural network information fusion framework for multiclass skin cancer classification. The proposed technique follows two streams: initially, a fusion-based contrast enhancement technique is proposed, which feeds enhanced images to the pretrained DenseNet201 architecture. The extracted features are later optimized using a skewness-controlled moth–flame optimization algorithm. In the second stream, deep features from the fine-tuned MobileNetV2 pretrained network are extracted and down-sampled using the proposed feature selection framework. Finally, most discriminant features from both networks are fused using a new parallel multimax coefficient correlation method. A multiclass extreme learning machine classifier is used to classify lesion images. The testing process is initiated on three imbalanced skin data sets—HAM10000, ISBI2018, and ISIC2019. The simulations are performed without performing any data augmentation step in achieving an accuracy of 96.5%, 98%, and 89%, respectively. A fair comparison with the existing techniques reveals the improved performance of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ln发布了新的文献求助10
1秒前
老实紫萱发布了新的文献求助10
2秒前
GGbound发布了新的文献求助10
4秒前
浚承完成签到,获得积分10
4秒前
8秒前
9秒前
10秒前
11秒前
柯一一应助听风者采纳,获得10
11秒前
充电宝应助老实紫萱采纳,获得10
12秒前
帅气飞绿关注了科研通微信公众号
12秒前
12秒前
幽默元正发布了新的文献求助10
13秒前
13秒前
所所应助LST采纳,获得10
16秒前
Emilia完成签到,获得积分10
16秒前
顾矜应助ln采纳,获得10
18秒前
19秒前
Sam发布了新的文献求助10
20秒前
20秒前
NPCMOMOM完成签到 ,获得积分10
21秒前
22秒前
shilye完成签到,获得积分10
22秒前
YH发布了新的文献求助10
23秒前
Lucas应助lwl250采纳,获得10
24秒前
初见发布了新的文献求助10
24秒前
研友_5ZlN6L发布了新的文献求助10
25秒前
小蛇玩完成签到,获得积分10
26秒前
aaaaaa发布了新的文献求助10
27秒前
Sam完成签到,获得积分10
27秒前
充电宝应助荣耀采纳,获得10
27秒前
芒果布丁完成签到,获得积分20
28秒前
28秒前
安好完成签到,获得积分10
28秒前
29秒前
烟花应助皓月星辰采纳,获得10
29秒前
30秒前
CodeCraft应助YH采纳,获得10
30秒前
小蘑菇应助aaaaaa采纳,获得10
31秒前
盛清让完成签到,获得积分10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517