已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pneumonia detection from lung X‐ray images using local search aided sine cosine algorithm based deep feature selection method

人工智能 计算机科学 算法 特征选择 模式识别(心理学) 分类器(UML) 计算机辅助诊断 降维 学习迁移 机器学习
作者
Soumitri Chattopadhyay,Rohit Kundu,Pawan Kumar Singh,Seyedali Mirjalili,Ram Sarkar
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 3777-3814 被引量:13
标识
DOI:10.1002/int.22703
摘要

International Journal of Intelligent SystemsVolume 37, Issue 7 p. 3777-3814 RESEARCH ARTICLE Pneumonia detection from lung X-ray images using local search aided sine cosine algorithm based deep feature selection method Soumitri Chattopadhyay, Soumitri Chattopadhyay orcid.org/0000-0002-2647-6053 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorRohit Kundu, Rohit Kundu Department of Electrical Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorPawan Kumar Singh, Pawan Kumar Singh orcid.org/0000-0002-9598-7981 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorSeyedali Mirjalili, Corresponding Author Seyedali Mirjalili ali.mirjalili@gmail.com orcid.org/0000-0002-1443-9458 Centre for Artificial Intelligence Research and Optimization, Torrens University, Fortitude Valley, Queensland, Australia Yonser Frontier Lab, Yonsei University, Seoul, Korea Correspondence Seyedali Mirjalili, Centre for Artificial Intelligence Research and Optimization, Torrens University, 90 Bowen Terrace, Fortitude Valley, QLD 4006, Australia. Email: ali.mirjalili@gmail.comSearch for more papers by this authorRam Sarkar, Ram Sarkar orcid.org/0000-0001-8813-4086 Department of Computer Science and Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this author Soumitri Chattopadhyay, Soumitri Chattopadhyay orcid.org/0000-0002-2647-6053 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorRohit Kundu, Rohit Kundu Department of Electrical Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorPawan Kumar Singh, Pawan Kumar Singh orcid.org/0000-0002-9598-7981 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorSeyedali Mirjalili, Corresponding Author Seyedali Mirjalili ali.mirjalili@gmail.com orcid.org/0000-0002-1443-9458 Centre for Artificial Intelligence Research and Optimization, Torrens University, Fortitude Valley, Queensland, Australia Yonser Frontier Lab, Yonsei University, Seoul, Korea Correspondence Seyedali Mirjalili, Centre for Artificial Intelligence Research and Optimization, Torrens University, 90 Bowen Terrace, Fortitude Valley, QLD 4006, Australia. Email: ali.mirjalili@gmail.comSearch for more papers by this authorRam Sarkar, Ram Sarkar orcid.org/0000-0001-8813-4086 Department of Computer Science and Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this author First published: 11 October 2021 https://doi.org/10.1002/int.22703Citations: 3Read the full textAboutRelatedInformationPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessClose modalShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Pneumonia is a major cause of death among children below the age of 5 years, globally. It is especially prevalent in developing and underdeveloped nations where the risk factors for the disease such as unhygienic living conditions, high levels of pollution and overcrowding are higher. Radiological examination (usually X-ray scans) is conducted to detect pneumonia, yet it is prone to subjective variability and can lead to disagreements among different radiologists. To detect traces of pneumonia from X-ray images, a more robust method is therefore required, which can be achieved by using a computer-aided diagnosis (CAD) system. In this study, we develop a two-stage framework, using the combination of deep learning and optimization algorithms, which is both accurate and time-efficient. In its first stage, the proposed framework extracts feature using a customized deep learning model called DenseNet-201 following the concept of transfer learning to cope with the scanty available data. In the second stage, we then reduce the feature dimension using an improved sine cosine algorithm equipped with adaptive beta hill climbing-based local search algorithm. The optimized feature subset is utilized for the classification of “Pneumonia” and “Normal” X-ray images using a support vector machines classifier. Upon an evaluation on a publicly available data set, the proposed method demonstrates the highest accuracy of 98.36% and sensitivity of 98.79% with a feature reduction of 85.55% (74 features selected out of 512), using a five-fold cross-validation scheme. Extensive additional experiments on continuous benchmark functions as well as the CEC-2017 test suite further showcase the superiority and suitability of our proposed approach in application to real-valued optimization problems. The relevant codes for the proposed method can be found in https://github.com/soumitri2001/Pneumonia-Detection-Local-Search-aided-SCA. CONFLICT OF INTERESTS The authors declare that there are no conflict of interests. Citing Literature Volume37, Issue7July 2022Pages 3777-3814 RelatedInformation RecommendedForest optimization algorithm‐based feature selection using classifier ensembleUsha Moorthy, Usha Devi Gandhi, Computational IntelligenceDeep learning on compressed sensing measurements in pneumonia detectionSheikh Rafiul Islam, Santi P. Maity, Ajoy Kumar Ray, Mrinal Mandal, International Journal of Imaging Systems and TechnologyAn OpenCL‐accelerated parallel immunodominance clone selection algorithm for feature selectionHuming Zhu, Yanfei Wu, Pei Li, Peng Zhang, Zhe Ji, Maoguo Gong, Concurrency and Computation: Practice and ExperienceFusion of convolutional neural networks based on Dempster–Shafer theory for automatic pneumonia detection from chest X‐ray imagesSafa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa, Henda Ben Ghézala, International Journal of Imaging Systems and TechnologyA cost-sensitive deep learning-based meta-classifier for pediatric pneumonia classification using chest X-raysVinayakumar Ravi, Harini Narasimhan, Tuan D. Pham, Expert Systems

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助dd采纳,获得10
14秒前
jayyong完成签到,获得积分10
14秒前
活力的小猫咪完成签到 ,获得积分10
14秒前
黄毅完成签到 ,获得积分10
15秒前
情怀应助啊娴仔采纳,获得10
17秒前
抠鼻公主完成签到 ,获得积分10
20秒前
小虎完成签到,获得积分10
21秒前
满唐完成签到 ,获得积分10
25秒前
嗯哼应助科研通管家采纳,获得20
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
程瀚砚完成签到,获得积分10
29秒前
31秒前
33秒前
狂野晓蕾完成签到,获得积分20
38秒前
研友_8R7JVL完成签到,获得积分10
42秒前
posh完成签到 ,获得积分10
42秒前
狂野晓蕾发布了新的文献求助10
44秒前
我要蜂蜜柚子完成签到,获得积分10
49秒前
Juujuucc完成签到 ,获得积分10
52秒前
57秒前
千倾完成签到 ,获得积分10
59秒前
SusanChu发布了新的文献求助20
1分钟前
星月夜发布了新的文献求助10
1分钟前
1分钟前
3080完成签到 ,获得积分10
1分钟前
星月夜完成签到,获得积分10
1分钟前
1分钟前
瘪良科研完成签到,获得积分10
1分钟前
Hasee完成签到 ,获得积分10
1分钟前
Omega完成签到,获得积分10
1分钟前
Que发布了新的文献求助10
1分钟前
1分钟前
xingxing完成签到 ,获得积分10
1分钟前
清爽老九应助快乐迎心采纳,获得30
1分钟前
xiemeili完成签到 ,获得积分10
1分钟前
不能随便完成签到,获得积分10
1分钟前
XJT007完成签到 ,获得积分10
1分钟前
阜睿完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946587
关于积分的说明 8530889
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855