Pneumonia detection from lung X‐ray images using local search aided sine cosine algorithm based deep feature selection method

人工智能 计算机科学 算法 特征选择 模式识别(心理学) 分类器(UML) 计算机辅助诊断 降维 学习迁移 机器学习
作者
Soumitri Chattopadhyay,Rohit Kundu,Pawan Kumar Singh,Seyedali Mirjalili,Ram Sarkar
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (7): 3777-3814 被引量:13
标识
DOI:10.1002/int.22703
摘要

International Journal of Intelligent SystemsVolume 37, Issue 7 p. 3777-3814 RESEARCH ARTICLE Pneumonia detection from lung X-ray images using local search aided sine cosine algorithm based deep feature selection method Soumitri Chattopadhyay, Soumitri Chattopadhyay orcid.org/0000-0002-2647-6053 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorRohit Kundu, Rohit Kundu Department of Electrical Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorPawan Kumar Singh, Pawan Kumar Singh orcid.org/0000-0002-9598-7981 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorSeyedali Mirjalili, Corresponding Author Seyedali Mirjalili ali.mirjalili@gmail.com orcid.org/0000-0002-1443-9458 Centre for Artificial Intelligence Research and Optimization, Torrens University, Fortitude Valley, Queensland, Australia Yonser Frontier Lab, Yonsei University, Seoul, Korea Correspondence Seyedali Mirjalili, Centre for Artificial Intelligence Research and Optimization, Torrens University, 90 Bowen Terrace, Fortitude Valley, QLD 4006, Australia. Email: ali.mirjalili@gmail.comSearch for more papers by this authorRam Sarkar, Ram Sarkar orcid.org/0000-0001-8813-4086 Department of Computer Science and Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this author Soumitri Chattopadhyay, Soumitri Chattopadhyay orcid.org/0000-0002-2647-6053 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorRohit Kundu, Rohit Kundu Department of Electrical Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorPawan Kumar Singh, Pawan Kumar Singh orcid.org/0000-0002-9598-7981 Department of Information Technology, Jadavpur University, Kolkata, IndiaSearch for more papers by this authorSeyedali Mirjalili, Corresponding Author Seyedali Mirjalili ali.mirjalili@gmail.com orcid.org/0000-0002-1443-9458 Centre for Artificial Intelligence Research and Optimization, Torrens University, Fortitude Valley, Queensland, Australia Yonser Frontier Lab, Yonsei University, Seoul, Korea Correspondence Seyedali Mirjalili, Centre for Artificial Intelligence Research and Optimization, Torrens University, 90 Bowen Terrace, Fortitude Valley, QLD 4006, Australia. Email: ali.mirjalili@gmail.comSearch for more papers by this authorRam Sarkar, Ram Sarkar orcid.org/0000-0001-8813-4086 Department of Computer Science and Engineering, Jadavpur University, Kolkata, IndiaSearch for more papers by this author First published: 11 October 2021 https://doi.org/10.1002/int.22703Citations: 3Read the full textAboutRelatedInformationPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessClose modalShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Pneumonia is a major cause of death among children below the age of 5 years, globally. It is especially prevalent in developing and underdeveloped nations where the risk factors for the disease such as unhygienic living conditions, high levels of pollution and overcrowding are higher. Radiological examination (usually X-ray scans) is conducted to detect pneumonia, yet it is prone to subjective variability and can lead to disagreements among different radiologists. To detect traces of pneumonia from X-ray images, a more robust method is therefore required, which can be achieved by using a computer-aided diagnosis (CAD) system. In this study, we develop a two-stage framework, using the combination of deep learning and optimization algorithms, which is both accurate and time-efficient. In its first stage, the proposed framework extracts feature using a customized deep learning model called DenseNet-201 following the concept of transfer learning to cope with the scanty available data. In the second stage, we then reduce the feature dimension using an improved sine cosine algorithm equipped with adaptive beta hill climbing-based local search algorithm. The optimized feature subset is utilized for the classification of “Pneumonia” and “Normal” X-ray images using a support vector machines classifier. Upon an evaluation on a publicly available data set, the proposed method demonstrates the highest accuracy of 98.36% and sensitivity of 98.79% with a feature reduction of 85.55% (74 features selected out of 512), using a five-fold cross-validation scheme. Extensive additional experiments on continuous benchmark functions as well as the CEC-2017 test suite further showcase the superiority and suitability of our proposed approach in application to real-valued optimization problems. The relevant codes for the proposed method can be found in https://github.com/soumitri2001/Pneumonia-Detection-Local-Search-aided-SCA. CONFLICT OF INTERESTS The authors declare that there are no conflict of interests. Citing Literature Volume37, Issue7July 2022Pages 3777-3814 RelatedInformation RecommendedForest optimization algorithm‐based feature selection using classifier ensembleUsha Moorthy, Usha Devi Gandhi, Computational IntelligenceDeep learning on compressed sensing measurements in pneumonia detectionSheikh Rafiul Islam, Santi P. Maity, Ajoy Kumar Ray, Mrinal Mandal, International Journal of Imaging Systems and TechnologyAn OpenCL‐accelerated parallel immunodominance clone selection algorithm for feature selectionHuming Zhu, Yanfei Wu, Pei Li, Peng Zhang, Zhe Ji, Maoguo Gong, Concurrency and Computation: Practice and ExperienceFusion of convolutional neural networks based on Dempster–Shafer theory for automatic pneumonia detection from chest X‐ray imagesSafa Ben Atitallah, Maha Driss, Wadii Boulila, Anis Koubaa, Henda Ben Ghézala, International Journal of Imaging Systems and TechnologyA cost-sensitive deep learning-based meta-classifier for pediatric pneumonia classification using chest X-raysVinayakumar Ravi, Harini Narasimhan, Tuan D. Pham, Expert Systems

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得20
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
小小aa16完成签到,获得积分10
2秒前
共享精神应助123pc采纳,获得10
3秒前
shi123发布了新的文献求助10
3秒前
4秒前
核桃应助明天开始戒绿茶采纳,获得10
5秒前
Light完成签到,获得积分10
5秒前
5秒前
爆米花应助kekerenren采纳,获得10
6秒前
xhjh03发布了新的文献求助10
6秒前
9秒前
a成发布了新的文献求助10
9秒前
pirongshi发布了新的文献求助10
9秒前
10秒前
shi123完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
13秒前
Lau发布了新的文献求助10
14秒前
成就盼芙完成签到,获得积分10
15秒前
a雪橙完成签到 ,获得积分10
15秒前
17发布了新的文献求助30
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371