作者
Wei Zheng,Chen Yang,Shuheng Yang,Simin Sun,Mingkun Mu,Meng Rao,Ruowen Zu,Junfang Yan,Bingnan Ren,Rei‐Cheng Yang,Yichun Guan
摘要
Preimplantation genetic testing (PGT) includes methods that allow embryos to be tested for severe inherited diseases or chromosomal abnormalities. In addition to IVF/ICSI and repeated freezing and thawing of the embryos, PGT requires a biopsy to obtain embryonic genetic material for analysis. However, the potential effects of PGT on obstetric and neonatal outcomes are currently uncertain.This study aimed to investigate whether pregnancies conceived after PGT were associated with a higher risk of adverse obstetric and neonatal outcomes compared with spontaneously conceived (SC) pregnancies or pregnancies conceived after IVF/ICSI.PubMed, EMBASE, MEDLINE, Web of Science and The Cochrane Library entries from January 1990 to January 2021 were searched. The primary outcomes in this study were low birth weight (LBW) and congenital malformations (CMs), and the secondary outcomes included gestational age, preterm delivery (PTD), very preterm delivery (VPTD), birth weight (BW), very low birth weight (VLBW), neonatal intensive care unit (NICU) admission, hypertensive disorders of pregnancy (HDP), gestational diabetes, placenta previa and preterm premature rupture of membranes (PROM). We further pooled the results of PGT singleton pregnancies. Subgroup analyses included preimplantation genetic diagnosis (PGD), preimplantation genetic screening (PGS), cleavage-stage biopsy combined with fresh embryo transfer (CB-ET) and blastocyst biopsy combined with frozen-thawed embryo transfer (BB-FET).This meta-analysis included 15 studies involving 3682 babies born from PGT pregnancies, 127 719 babies born from IVF/ICSI pregnancies and 915 222 babies born from SC pregnancies. The relative risk (RR) of LBW was higher in PGT pregnancies compared with SC pregnancies (RR = 3.95, 95% confidence interval [CI]: 2.32-6.72), but the risk of CMs was not different between the two groups. The pooled results for the risks of LBW and CMs were similar in PGT and IVF/ICSI pregnancies. The risks of PTD (RR = 3.12, 95% CI: 2.67-3.64) and HDP (RR = 3.12, 95% CI: 2.18-4.47) were significantly higher in PGT pregnancies compared with SC pregnancies. Lower gestational age (mean difference [MD] = -0.76 weeks, 95% CI -1.17 to -0.34) and BW (MD = -163.80 g, 95% CI: -299.35 to -28.24) were also noted for PGT pregnancies compared with SC pregnancies. Nevertheless, compared with IVF/ICSI pregnancies, the risks of VPTD and VLBW in PGT pregnancies were significantly decreased by 41% and 30%, respectively, although the risk of HDP was still significantly increased by 50% in PGT pregnancies compared with IVF/ICSI pregnancies. The combined results of obstetric and neonatal outcomes of PGT and IVF/ICSI singleton pregnancies were consistent with the overall results. Further subgroup analyses indicated that both PGD and PGS pregnancies were associated with a higher risk of PTD and a lower gestational age compared with SC pregnancies.This meta-analysis showed that PGT pregnancies may be associated with increased risks of LBW, PTD and HDP compared with SC pregnancies. The overall obstetric and neonatal outcomes of PGT pregnancies are favourable compared with those of IVF/ICSI pregnancies, although PGT pregnancies were associated with a higher risk of HDP. However, because the number of studies that could be included was limited, more randomised controlled trials and prospective cohort studies are needed to confirm these conclusions.