Advances and challenges in metal ion separation from water

吸附 化学 膜技术 水溶液中的金属离子 金属有机骨架 电化学 纳米技术 金属 废水 材料科学 化学工程 电极 有机化学 环境科学 环境工程 物理化学 工程类 生物化学
作者
Amit Kumar,Yoonseob Kim,Xiao Su,Hiroki Fukuda,Gayathri Naidu,Fengmin Du,S. Vigneswaran,Enrico Drioli,T. Alan Hatton,John H. Lienhard
出处
期刊:Trends in chemistry [Elsevier]
卷期号:3 (10): 819-831 被引量:15
标识
DOI:10.1016/j.trechm.2021.08.001
摘要

Major technologies for metal ion recovery from water and wastewater include chemical precipitation, membrane filtration, adsorption, and electrochemical separation. Recent studies have focused on membrane, adsorption, and electrochemical methods, sophisticating them to obtain high selectivity and recovery. Membrane filtration plays an important role in separating monovalent and divalent metal ions. Metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and porous-organic polymers (POPs) have recently been studied to separate a specific metal ion selectively. Electrochemical methods are critical and useful options to make best use of adsorption because electrochemical power can strengthen the recyclability and stability of adsorbents. Technologies for selective metal ion separation from water and wastewater are currently attracting strong research interest as a pathway to greater sustainability. The chemistry of metal ion separation processes is critical for understanding the mechanisms of selectivity and making the technologies viable. This paper discusses current advances and challenges in metal ion separation technologies from chemical points of view and proposes how they should be approached in the future. Technologies for selective metal ion separation from water and wastewater are currently attracting strong research interest as a pathway to greater sustainability. The chemistry of metal ion separation processes is critical for understanding the mechanisms of selectivity and making the technologies viable. This paper discusses current advances and challenges in metal ion separation technologies from chemical points of view and proposes how they should be approached in the future. porous materials adsorb contaminants. Kinetics and uptake are determined by its internal structure and composition. chemicals (e.g., sulfide and hydroxide reagents) react with metal ions to form insoluble precipitates, which are then separated from the water by sedimentation or filtration. target contaminants and resources include water, gases, salts, metals, and organic compounds, which are separated from the aqueous phase to reduce environmental impacts or to be recycled and used as valuable resources. a class of materials that only involve light organic elements (C, N, O, B, and Si) through strong covalent bonds (B−O, C−N, B−N, and B−O−Si). COFs have emerged as an important class of porous materials, with the advantages of designed structures, tunable pore size, and functionality. charge controlled electrodes can capture and release contaminants. Design of chemical specificity between electrodes and contaminants is the key to performance. a thermally driven process in which a hydrophobic porous membrane separates vapor from a warm liquid solution stream. The hydrophobicity of the membrane prevents liquid passage through the pores while allowing the passage of solvent vapor. pressure drives water through pores in a membrane, separating particles larger than the pores. This approach is most effective when the particles are sufficiently large. a class of compounds made by assembling inorganic units and organic linkers that form one-, two-, or three-dimensional structures. MOFs are often porous polymers. noncrystalline, but still highly porous and stable materials. More diverse synthetic coupling reactions, including Sonogashira−Hagihara, Suzuki−Miyaura, Yamamoto, or Eglinton couplings are used to make high-performance POPs with additional thiol chelating groups. involve the transfer of electrons and the subsequent oxidation or reduction of a compound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhangxuhns完成签到,获得积分10
刚刚
orixero应助路漫漫采纳,获得10
1秒前
新新发布了新的文献求助10
1秒前
nicole完成签到,获得积分10
2秒前
2秒前
wanci应助火星上的土豆采纳,获得10
2秒前
Hello应助丽晶洁愿采纳,获得10
2秒前
3秒前
baby婷发布了新的文献求助10
3秒前
樱桃猴子应助求求了采纳,获得10
4秒前
乐乐应助求求了采纳,获得10
4秒前
qq1033312015完成签到,获得积分20
4秒前
科研通AI2S应助那个笨笨采纳,获得10
4秒前
5秒前
6秒前
斯文败类应助哑巴采纳,获得10
6秒前
7秒前
可乐加冰发布了新的文献求助10
8秒前
WXT发布了新的文献求助10
8秒前
8秒前
YYH完成签到,获得积分10
8秒前
8秒前
lusuoshan发布了新的文献求助10
9秒前
忧郁紫翠发布了新的文献求助10
11秒前
11秒前
琥珀川发布了新的文献求助50
12秒前
小凉完成签到 ,获得积分10
13秒前
13秒前
所所应助开朗猫咪采纳,获得10
18秒前
19秒前
爱喝酸奶的天真完成签到,获得积分10
19秒前
solota完成签到,获得积分10
20秒前
路漫漫完成签到,获得积分20
20秒前
21秒前
22秒前
23秒前
Veronica Mew完成签到 ,获得积分10
23秒前
约克宁完成签到,获得积分10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352