薄雾
环境科学
煤燃烧产物
大气科学
生物质燃烧
燃烧
煤
气溶胶
污染
污染物
空气污染
中国
气象学
气候学
环境化学
环境工程
化学
地理
地质学
生态学
有机化学
考古
生物
作者
Wenguang Li,Fengkui Duan,Qing Zhao,Wei-Wei Song,Yuan Cheng,Xiaoyan Wang,Lei Li,Kebin He
标识
DOI:10.1016/j.scitotenv.2021.149631
摘要
Heavy haze pollution has occurred frequently in the past few years in Northeast China during winters, which was distinct from other regions in China because of the particular meteorological conditions. In this study, we analyzed the temporal variation, source appointment, and influencing factors of PM2.5 from December 1, 2018 to February 28, 2019 in Harbin. The results showed obvious differences between the non-haze and haze periods. The source appointment based on a single-particle aerosol mass spectrometer showed that coal combustion, vehicle emissions, biomass burning, and secondary inorganic aerosols (SIAs) were the major contributors of PM2.5. It is interesting that from the non-haze to the haze period, contributions of coal combustion and SIAs increased (from 20.2% to 27.3%, and from 17.3% to 18.9%, respectively) while other sources decreased or increased little. It indicated the primary pollutants from heating supply were the most important contributor to haze formation due to the low temperature. Furthermore, from levels I (0 < PM2.5 ≤ 75 μg m-3) to III (115 < PM2.5 ≤ 150 μg m-3), SIAs increased from 15.3% to 19.4% (increased 4.1%), while coal combustion from 23.7% to 27.1% and increased 3.4%. It implied clearly that SIAs played a comparable role in the early stage of the evolution of haze episode as that of coal combustion. Combining data on prevailing winds and results of potential source contribution function indicated that PM2.5 during the haze period was primarily influenced by the air masses originating from the southwestern areas via regional transport. A positive correlation was observed between relative humidity (RH) and haze pollution when RH ≥ 60%, indicating that hygroscopic growth may be the principal factor promoting secondary formation. CAPSULE: Coal combustion was the most important source in Harbin due to the low temperature, and secondary aerosols promoted the early stage of the haze evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI