Nucleation landscape of biomolecular condensates

成核 天体生物学 纳米技术 化学 材料科学 统计物理学 物理 有机化学
作者
Shunsuke F. Shimobayashi,Pierre Ronceray,David W. Sanders,Mikko Haataja,Clifford P. Brangwynne
出处
期刊:Nature [Springer Nature]
卷期号:599 (7885): 503-506 被引量:162
标识
DOI:10.1038/s41586-021-03905-5
摘要

All structures within living cells must form at the right time and place. This includes condensates such as the nucleolus, Cajal bodies and stress granules, which form via liquid–liquid phase separation of biomolecules, particularly proteins enriched in intrinsically disordered regions (IDRs)1,2. In non-living systems, the initial stages of nucleated phase separation arise when thermal fluctuations overcome an energy barrier due to surface tension. This phenomenon can be modelled by classical nucleation theory (CNT), which describes how the rate of droplet nucleation depends on the degree of supersaturation, whereas the location at which droplets appear is controlled by interfacial heterogeneities3,4. However, it remains unknown whether this framework applies in living cells, owing to the multicomponent and highly complex nature of the intracellular environment, including the presence of diverse IDRs, whose specificity of biomolecular interactions is unclear5–8. Here we show that despite this complexity, nucleation in living cells occurs through a physical process similar to that in inanimate materials, but the efficacy of nucleation sites can be tuned by their biomolecular features. By quantitatively characterizing the nucleation kinetics of endogenous and biomimetic condensates in living cells, we find that key features of condensate nucleation can be quantitatively understood through a CNT-like theoretical framework. Nucleation rates can be substantially enhanced by compatible biomolecular (IDR) seeds, and the kinetics of cellular processes can impact condensate nucleation rates and specificity of location. This quantitative framework sheds light on the intracellular nucleation landscape, and paves the way for engineering synthetic condensates precisely positioned in space and time. Experiments using endogenous and biomimetic condensates in cells show that nucleation in cells resembles the physical process in inanimate materials, but is tuned by biomolecular features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
再沉默完成签到,获得积分10
1秒前
1秒前
1秒前
明亮无颜发布了新的文献求助20
2秒前
2秒前
谁还没有个生活完成签到,获得积分10
2秒前
Feng发布了新的文献求助10
2秒前
zzz发布了新的文献求助10
2秒前
MailkMonk发布了新的文献求助10
2秒前
2秒前
xuxuxu完成签到,获得积分10
3秒前
文龙完成签到 ,获得积分10
3秒前
ximomm完成签到,获得积分10
3秒前
无不破哉发布了新的文献求助10
3秒前
3秒前
研友_bZzkR8完成签到,获得积分10
4秒前
XIXI发布了新的文献求助30
4秒前
再沉默发布了新的文献求助10
5秒前
子俞发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
打打应助习习采纳,获得10
6秒前
bluer发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助无悔呀采纳,获得10
8秒前
毛毛虫完成签到,获得积分10
8秒前
快乐小文完成签到,获得积分10
8秒前
Nooooo发布了新的文献求助10
9秒前
9秒前
贰鸟应助木之以南采纳,获得10
9秒前
无不破哉完成签到,获得积分20
9秒前
Dai WJ发布了新的文献求助10
10秒前
黄大师完成签到 ,获得积分10
10秒前
愤怒的河虾完成签到,获得积分10
10秒前
所所应助XIXI采纳,获得10
10秒前
麻麻发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678