力谱学
悬臂梁
内在无序蛋白质
蛋白质折叠
生物物理学
折叠(DSP实现)
化学
能源景观
原子力显微镜
蛋白质结构
分子动力学
蛋白质动力学
生物分子
化学物理
构象集合
结构生物学
生物分子结构
计算生物学
分子
材料科学
纳米技术
力场(虚构)
计算化学
生物
生物化学
复合材料
工程类
电气工程
作者
Devin T. Edwards,Marc-Andre LeBlanc,Thomas T. Perkins
标识
DOI:10.1073/pnas.2015728118
摘要
Significance Atomic force microscopy (AFM) is widely applied to unfold proteins. Using advanced cantilevers in a commercial AFM to improve stability and precision, we unfolded and then refolded an individual fast-folding, mechanically labile protein—a technically challenging sample—thousands of times. To address concerns that the measured dynamics of such proteins are dominated by the AFM assay, we modulated the protein’s folding rate using pH. Kinetic analysis demonstrated changes in free-energy landscape parameters with pH, despite the reconstructed landscape being dominated by the assay. Hence, AFM using advanced cantilevers can yield biophysical insight into proteins, even if they unfold at low force.
科研通智能强力驱动
Strongly Powered by AbleSci AI