Towards radiologist-level cancer risk assessment in CT lung screening using deep learning

医学 全国肺筛查试验 背景(考古学) 深度学习 肺癌 放射科 人工智能 人口 肺癌筛查 癌症 计算机科学 计算机断层摄影术 机器学习 内科学 古生物学 环境卫生 生物
作者
Stojan Trajanovski,Dimitrios Mavroeidis,Christine Leon Swisher,Binyam Gebrekidan Gebre,Bastiaan S. Veeling,Rafael Wiemker,Tobias Klinder,Amir Tahmasebi,Shawn M. Regis,Christoph Wald,Brady J. McKee,Sebastian Flacke,Heber MacMahon,Homer Pien
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:90: 101883-101883 被引量:35
标识
DOI:10.1016/j.compmedimag.2021.101883
摘要

Lung cancer is the leading cause of cancer mortality in the US, responsible for more deaths than breast, prostate, colon and pancreas cancer combined and large population studies have indicated that low-dose computed tomography (CT) screening of the chest can significantly reduce this death rate. Recently, the usefulness of Deep Learning (DL) models for lung cancer risk assessment has been demonstrated. However, in many cases model performances are evaluated on small/medium size test sets, thus not providing strong model generalization and stability guarantees which are necessary for clinical adoption. In this work, our goal is to contribute towards clinical adoption by investigating a deep learning framework on larger and heterogeneous datasets while also comparing to state-of-the-art models.Three low-dose CT lung cancer screening datasets were used: National Lung Screening Trial (NLST, n = 3410), Lahey Hospital and Medical Center (LHMC, n = 3154) data, Kaggle competition data (from both stages, n = 1397 + 505) and the University of Chicago data (UCM, a subset of NLST, annotated by radiologists, n = 132). At the first stage, our framework employs a nodule detector; while in the second stage, we use both the image context around the nodules and nodule features as inputs to a neural network that estimates the malignancy risk for the entire CT scan. We trained our algorithm on a part of the NLST dataset, and validated it on the other datasets. Special care was taken to ensure there was no patient overlap between the train and validation sets.The proposed deep learning model is shown to: (a) generalize well across all three data sets, achieving AUC between 86% to 94%, with our external test-set (LHMC) being at least twice as large compared to other works; (b) have better performance than the widely accepted PanCan Risk Model, achieving 6 and 9% better AUC score in our two test sets; (c) have improved performance compared to the state-of-the-art represented by the winners of the Kaggle Data Science Bowl 2017 competition on lung cancer screening; (d) have comparable performance to radiologists in estimating cancer risk at a patient level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助vgdrg采纳,获得10
3秒前
Wang发布了新的文献求助10
3秒前
4秒前
小黑发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助聪明大米采纳,获得10
7秒前
神之韵完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
牛安荷完成签到 ,获得积分10
10秒前
Shuey完成签到,获得积分10
10秒前
vgdrg发布了新的文献求助10
14秒前
Ricardo完成签到 ,获得积分10
19秒前
22秒前
22秒前
27秒前
田様应助有星星的小路采纳,获得10
28秒前
29秒前
WWXWWX发布了新的文献求助10
34秒前
小怪兽完成签到,获得积分10
35秒前
pojian完成签到,获得积分10
35秒前
37秒前
Long发布了新的文献求助10
41秒前
46秒前
共享精神应助健壮的访曼采纳,获得30
47秒前
48秒前
51秒前
勇敢的心发布了新的文献求助10
52秒前
漂亮的不言完成签到 ,获得积分10
52秒前
wanci应助聪明大米采纳,获得10
56秒前
romif11398完成签到,获得积分10
59秒前
言非离完成签到 ,获得积分10
1分钟前
xsq发布了新的文献求助10
1分钟前
单薄的咖啡完成签到 ,获得积分10
1分钟前
romme发布了新的文献求助10
1分钟前
1分钟前
勇敢的心完成签到,获得积分10
1分钟前
院士人启动完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Teaching Essential Units of Language 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372166
求助须知:如何正确求助?哪些是违规求助? 2990056
关于积分的说明 8738516
捐赠科研通 2673400
什么是DOI,文献DOI怎么找? 1464426
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668912