多边形网格
接口(物质)
趋同(经济学)
数学
有限元法
理论(学习稳定性)
数值分析
欧拉公式
成交(房地产)
应用数学
反向欧拉法
数值稳定性
数学优化
计算机科学
数学分析
欧拉方程
几何学
机器学习
物理
最大气泡压力法
政治学
气泡
经济
并行计算
热力学
法学
经济增长
摘要
Immersed finite element (IFE) methods are a group of long-existing numerical methods for solving interface problems on unfitted meshes. A core argument of the methods is to avoid a mesh regeneration procedure when solving moving interface problems. Despite the various applications in moving interface problems, a complete theoretical study on the convergence behavior is still missing. This research is devoted to closing the gap between numerical experiments and theory. We present the first fully discrete analysis including the stability and optimal error estimates for a backward Euler IFE method for solving parabolic moving interface problems. Numerical results are also presented to validate the analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI