Enhancing the generalizability of predictive models with synergy of data and physics

概化理论 机器学习 人工智能 计算机科学 过程(计算) 预测性维护 简单 预测建模 特征(语言学) 数据挖掘 工程类 可靠性工程 数学 哲学 操作系统 认识论 统计
作者
Yingjun Shen,Zhe Song,Andrew Kusiak
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (3): 034002-034002 被引量:1
标识
DOI:10.1088/1361-6501/ac3944
摘要

Wind farm needs prediction models for predictive maintenance. There is a need to predict values of non-observable parameters beyond ranges reflected in available data. A prediction model developed for one machine many not perform well in another similar machine. This is usually due to lack of generalizability of data-driven models. To increase generalizability of predictive models, this research integrates the data mining with first-principle knowledge. Physics-based principles are combined with machine learning algorithms through feature engineering, strong rules and divide-and-conquer. The proposed synergy concept is illustrated with the wind turbine blade icing prediction and achieves significant prediction accuracy across different turbines. The proposed process is widely accepted by wind energy predictive maintenance practitioners because of its simplicity and efficiency. Furthermore, this paper demonstrates the importance of embedding physical principles within the machine learning process, and also highlight an important point that the need for more complex machine learning algorithms in industrial big data mining is often much less than it is in other applications, making it essential to incorporate physics and follow Less is More philosophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuyisha发布了新的文献求助10
刚刚
pzy完成签到,获得积分10
刚刚
13223456发布了新的文献求助10
1秒前
红柚完成签到,获得积分10
2秒前
秋傲儿完成签到,获得积分10
3秒前
mimi发布了新的文献求助10
3秒前
Ramer556完成签到,获得积分10
4秒前
Daisy完成签到 ,获得积分10
5秒前
完美世界应助xzl采纳,获得10
6秒前
tt完成签到 ,获得积分10
7秒前
8秒前
8秒前
冷酷的听兰完成签到,获得积分10
8秒前
Panini完成签到 ,获得积分10
9秒前
9秒前
甄高丽完成签到,获得积分10
11秒前
积极问晴发布了新的文献求助10
11秒前
QYW发布了新的文献求助10
12秒前
领导范儿应助科研通管家采纳,获得30
13秒前
Orange应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
温柔惜筠应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
hehe应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
Yziii应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137412
求助须知:如何正确求助?哪些是违规求助? 2788462
关于积分的说明 7786566
捐赠科研通 2444645
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625712
版权声明 601023