Flame‐Assisted Synthesis of O‐Coordinated Single‐Atom Catalysts for Efficient Electrocatalytic Oxygen Reduction and Hydrogen Evolution Reaction

电催化剂 催化作用 材料科学 碳纳米管 纳米技术 析氧 氧气 密度泛函理论 化学工程 金属 可逆氢电极 碳纤维 电极 电化学 化学 物理化学 工作电极 计算化学 复合材料 有机化学 复合数 工程类 冶金
作者
Jinze Li,Hao Li,Wenfu Xie,Shijin Li,Yuke Song,Kui Fan,Jin Yong Lee,Mingfei Shao
出处
期刊:Small methods [Wiley]
卷期号:6 (1) 被引量:19
标识
DOI:10.1002/smtd.202101324
摘要

Single-atom catalysts (SACs) exhibit intriguing performance in electrocatalysis owing to their maximized atom utilizations and unique electronic structures, but effective anchoring metal atoms with defined coordination structure on hierarchical integrated electrode remain a challenge. Herein, a fast and facial flame-assisted strategy is developed to construct oxygen-coordinated SACs on integrated carbon nanotube (CNT) arrays with promising applications in electrocatalysis. Density functional theory calculations show that oxygen in carbon substrate imparts homogeneous sites for the efficient anchoring of metal atoms, thereby enabling SACs to disperse uniformly and firmly and thus bringing optimized activities. Moreover, the integrated CNT array with abundant oxygen-containing groups is constructed and has been used as an efficient matrix for anchoring metal atoms (CNT-O@M) via a flame-assisted method. The as-prepared CNT-O@M (M = Co and Pt as typical examples) shows excellent activities in electrocatalytic oxygen reduction reaction and hydrogen evolution reaction with utilization of active site as high as 75.7%, which is superior to the reported SACs. Particularly, the performance of CNT-O@M can maintain stably under various harsh conditions, showing a promising prospect in the long-time applications. The methodology and concept proposed in this work could be extended to the synthesis of a variety of integrated SACs for efficient electrocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hxn完成签到,获得积分10
1秒前
奋斗尔安完成签到,获得积分10
1秒前
沙拉发布了新的文献求助10
2秒前
hajy完成签到 ,获得积分10
2秒前
单纯寒凝发布了新的文献求助10
2秒前
2秒前
junzilan发布了新的文献求助10
2秒前
田様应助卡卡采纳,获得10
3秒前
Zezezee发布了新的文献求助10
5秒前
复杂的问玉完成签到,获得积分20
6秒前
7秒前
7秒前
睡睡完成签到,获得积分10
7秒前
8秒前
9秒前
所所应助饕餮采纳,获得10
9秒前
平淡小凝发布了新的文献求助10
9秒前
nihaoxiaoai完成签到,获得积分10
10秒前
完美世界应助英俊的汉堡采纳,获得10
10秒前
爱静静应助hehe采纳,获得10
11秒前
九城发布了新的文献求助20
11秒前
斯文败类应助高君奇采纳,获得10
11秒前
小二郎应助特兰克斯采纳,获得10
11秒前
mojomars发布了新的文献求助10
11秒前
吃嘛嘛香完成签到,获得积分10
11秒前
wqy发布了新的文献求助10
12秒前
天天快乐应助新的心跳采纳,获得10
12秒前
Orange应助有益采纳,获得10
12秒前
14秒前
爆米花应助marinemiao采纳,获得10
14秒前
14秒前
招财不肥发布了新的文献求助10
15秒前
网安真难T_T完成签到,获得积分10
15秒前
大土豆子完成签到,获得积分10
16秒前
16秒前
甜甜醉波发布了新的文献求助10
17秒前
CodeCraft应助jy采纳,获得10
17秒前
领导范儿应助睡睡采纳,获得10
17秒前
哈哈完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808