已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Structured Multimodal Attentions for TextVQA

计算机科学 答疑 人工智能 判别式 自然语言处理 光学字符识别 水准点(测量) 生成语法 机器学习 图像(数学) 大地测量学 地理
作者
Chenyu Gao,Qi Zhu,Peng Wang,Hui Li,Yuliang Liu,Anton van den Hengel,Qi Wu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (12): 9603-9614 被引量:40
标识
DOI:10.1109/tpami.2021.3132034
摘要

Text based Visual Question Answering (TextVQA) is a recently raised challenge requiring models to read text in images and answer natural language questions by jointly reasoning over the question, textual information and visual content. Introduction of this new modality - Optical Character Recognition (OCR) tokens ushers in demanding reasoning requirements. Most of the state-of-the-art (SoTA) VQA methods fail when answer these questions because of three reasons: (1) poor text reading ability; (2) lack of textual-visual reasoning capacity; and (3) choosing discriminative answering mechanism over generative couterpart (although this has been further addressed by M4C). In this paper, we propose an end-to-end structured multimodal attention (SMA) neural network to mainly solve the first two issues above. SMA first uses a structural graph representation to encode the object-object, object-text and text-text relationships appearing in the image, and then designs a multimodal graph attention network to reason over it. Finally, the outputs from the above modules are processed by a global-local attentional answering module to produce an answer splicing together tokens from both OCR and general vocabulary iteratively by following M4C. Our proposed model outperforms the SoTA models on TextVQA dataset and two tasks of ST-VQA dataset among all models except pre-training based TAP. Demonstrating strong reasoning ability, it also won first place in TextVQA Challenge 2020. We extensively test different OCR methods on several reasoning models and investigate the impact of gradually increased OCR performance on TextVQA benchmark. With better OCR results, different models share dramatic improvement over the VQA accuracy, but our model benefits most blessed by strong textual-visual reasoning ability. To grant our method an upper bound and make a fair testing base available for further works, we also provide human-annotated ground-truth OCR annotations for the TextVQA dataset, which were not given in the original release. The code and ground-truth OCR annotations for the TextVQA dataset are available at https://github.com/ChenyuGAO-CS/SMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
传奇3应助踏实书文采纳,获得10
8秒前
隐形曼青应助撒发顺丰采纳,获得10
11秒前
11秒前
huzhu123发布了新的文献求助10
13秒前
隐形曼青应助笑点低千愁采纳,获得10
14秒前
17秒前
lhl完成签到,获得积分10
18秒前
甜甜甜完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助30
22秒前
25秒前
荔枝荔枝关注了科研通微信公众号
26秒前
32秒前
量子星尘发布了新的文献求助10
33秒前
34秒前
JamesPei应助zbx采纳,获得10
34秒前
善学以致用应助gr采纳,获得10
36秒前
科研通AI5应助友好的魔镜采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
活力的小猫咪完成签到 ,获得积分10
38秒前
撒发顺丰发布了新的文献求助10
39秒前
瘦瘦牛排完成签到 ,获得积分10
40秒前
自然完成签到,获得积分10
40秒前
huzhu123完成签到,获得积分10
42秒前
null完成签到,获得积分20
43秒前
量子星尘发布了新的文献求助10
46秒前
48秒前
Jasper应助JamesTYD采纳,获得10
50秒前
51秒前
shrak完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
54秒前
55秒前
荔枝荔枝发布了新的文献求助10
56秒前
59秒前
二虎发布了新的文献求助10
59秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762711
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185