Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木头完成签到,获得积分10
1秒前
徐瑕客发布了新的文献求助10
2秒前
小手冰凉发布了新的文献求助10
2秒前
AlexLam完成签到,获得积分10
3秒前
打打应助Sunny采纳,获得10
4秒前
ZYW完成签到,获得积分20
4秒前
5秒前
研友_VZG7GZ应助LDDD采纳,获得10
5秒前
海里的鱼额完成签到 ,获得积分10
5秒前
Lesley完成签到,获得积分10
5秒前
6秒前
星辰大海应助木心长采纳,获得10
6秒前
6秒前
6秒前
英姑应助陈谨诺采纳,获得10
7秒前
科研通AI5应助徐瑕客采纳,获得10
9秒前
10秒前
小丶小丶发布了新的文献求助30
10秒前
11秒前
土豪的沅发布了新的文献求助10
12秒前
诺诺完成签到 ,获得积分10
13秒前
胡子完成签到,获得积分10
13秒前
城九寒发布了新的文献求助10
13秒前
科目三应助Lesley采纳,获得10
13秒前
木子木子李完成签到,获得积分10
15秒前
mikebai完成签到,获得积分10
15秒前
F_echo发布了新的文献求助10
15秒前
九思发布了新的文献求助10
15秒前
默listening应助rk采纳,获得10
17秒前
17秒前
好学的猪完成签到,获得积分10
18秒前
小手冰凉完成签到,获得积分10
18秒前
18秒前
化学y完成签到,获得积分10
18秒前
drughunter009完成签到 ,获得积分10
19秒前
城九寒完成签到,获得积分10
20秒前
20秒前
bkagyin应助GRX1110采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181857
求助须知:如何正确求助?哪些是违规求助? 4368699
关于积分的说明 13603950
捐赠科研通 4220044
什么是DOI,文献DOI怎么找? 2314418
邀请新用户注册赠送积分活动 1313133
关于科研通互助平台的介绍 1261834