Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:15
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zty123采纳,获得10
1秒前
今后应助吴彦祖采纳,获得10
1秒前
深海鱼完成签到,获得积分20
2秒前
李爱国应助encounter采纳,获得10
2秒前
L112233完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
3秒前
4秒前
zhizhi2021发布了新的文献求助10
7秒前
7秒前
8秒前
Akim应助funny采纳,获得10
9秒前
GXL发布了新的文献求助10
9秒前
zty123完成签到,获得积分10
9秒前
zty123发布了新的文献求助10
13秒前
英姑应助WeiCY9886采纳,获得10
14秒前
幽默的香芦完成签到,获得积分10
17秒前
19秒前
ZHOUZHEN完成签到,获得积分10
19秒前
19秒前
鱼前完成签到,获得积分20
19秒前
Lucas应助GXL采纳,获得10
21秒前
21秒前
Vicki完成签到,获得积分10
21秒前
CipherSage应助zzzyyc采纳,获得10
21秒前
MM11111完成签到 ,获得积分10
22秒前
多情靖易发布了新的文献求助10
22秒前
23秒前
xiaixax发布了新的文献求助10
24秒前
NexusExplorer应助鱼前采纳,获得10
25秒前
曾梦发布了新的文献求助10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
墨水应助科研通管家采纳,获得20
26秒前
今后应助科研通管家采纳,获得10
27秒前
Orange应助科研通管家采纳,获得10
27秒前
syk应助科研通管家采纳,获得20
27秒前
WeiCY9886发布了新的文献求助10
27秒前
顾矜应助科研通管家采纳,获得10
27秒前
yyymmma应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
爆米花应助科研通管家采纳,获得10
27秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3278941
求助须知:如何正确求助?哪些是违规求助? 2917255
关于积分的说明 8385732
捐赠科研通 2588187
什么是DOI,文献DOI怎么找? 1410023
科研通“疑难数据库(出版商)”最低求助积分说明 657585
邀请新用户注册赠送积分活动 638650