Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助赵浩楠采纳,获得10
1秒前
2秒前
2秒前
缥缈橘子发布了新的文献求助10
2秒前
阳光谷完成签到,获得积分10
2秒前
美好的冰蓝完成签到 ,获得积分10
3秒前
lixiaorui发布了新的文献求助10
4秒前
科研通AI6应助江楠采纳,获得10
5秒前
酷波er应助雨雨爱薯条采纳,获得10
5秒前
852应助qq采纳,获得10
5秒前
6秒前
阳光谷发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
机灵千萍完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
领导范儿应助XL神放采纳,获得10
9秒前
minmin发布了新的文献求助10
9秒前
pterionGao发布了新的文献求助10
9秒前
9秒前
badjack完成签到,获得积分10
10秒前
10秒前
ggg发布了新的文献求助10
11秒前
12秒前
神经网络模型完成签到,获得积分10
13秒前
13秒前
今后应助初遇之时最暖采纳,获得10
13秒前
14秒前
14秒前
共享精神应助阿宋采纳,获得10
14秒前
14秒前
suda发布了新的文献求助10
14秒前
15秒前
idannn发布了新的文献求助10
16秒前
派大星完成签到,获得积分20
17秒前
噗哩大王发布了新的文献求助30
17秒前
养生坤坤发布了新的文献求助10
17秒前
hexinyu发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091