Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wipmzxu完成签到,获得积分10
刚刚
刚刚
yiyi完成签到,获得积分10
1秒前
踏水追风完成签到,获得积分10
2秒前
youili完成签到 ,获得积分10
2秒前
4秒前
食草味完成签到,获得积分20
5秒前
凌兰完成签到 ,获得积分10
5秒前
XZ完成签到,获得积分10
6秒前
小羊完成签到 ,获得积分10
6秒前
陈牛逼完成签到 ,获得积分10
6秒前
斯文败类应助adeno采纳,获得10
7秒前
积极废物完成签到 ,获得积分10
8秒前
深情安青应助贾不可采纳,获得10
8秒前
shimenwanzhao完成签到 ,获得积分0
9秒前
苻醉山完成签到 ,获得积分0
12秒前
DezhaoWang完成签到,获得积分10
12秒前
memory完成签到,获得积分10
12秒前
山神厘子完成签到,获得积分10
12秒前
犹豫山河完成签到,获得积分20
16秒前
leo完成签到 ,获得积分10
16秒前
hyf完成签到 ,获得积分10
17秒前
双青豆完成签到 ,获得积分10
19秒前
里埃尔塞因斯完成签到 ,获得积分10
19秒前
tetrakis完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
彭于彦祖完成签到,获得积分0
23秒前
王QQ完成签到 ,获得积分10
23秒前
和风完成签到 ,获得积分10
23秒前
万能图书馆应助贾不可采纳,获得10
23秒前
CLY完成签到,获得积分10
24秒前
miaomiao发布了新的文献求助100
28秒前
三杠完成签到 ,获得积分10
28秒前
嗒嗒完成签到,获得积分10
28秒前
Carry发布了新的文献求助10
28秒前
星辰大海应助why采纳,获得10
29秒前
贪玩的醉波完成签到,获得积分10
30秒前
一眼之间完成签到 ,获得积分10
31秒前
叶落无痕、完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027