已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒布6完成签到 ,获得积分10
1秒前
墨辰完成签到 ,获得积分10
1秒前
合适靖儿完成签到 ,获得积分10
3秒前
导师求放过完成签到,获得积分0
3秒前
满意机器猫完成签到 ,获得积分10
4秒前
TTTHANKS完成签到 ,获得积分10
4秒前
ftl完成签到 ,获得积分10
5秒前
LWJ要毕业完成签到 ,获得积分10
5秒前
锦敏完成签到 ,获得积分20
5秒前
桐桐应助123456采纳,获得10
5秒前
Elfin1221完成签到 ,获得积分10
7秒前
大气幻丝完成签到,获得积分10
8秒前
LBJ23完成签到,获得积分10
9秒前
9秒前
长命百岁完成签到 ,获得积分10
10秒前
master-f完成签到 ,获得积分10
10秒前
悦耳短靴完成签到 ,获得积分10
10秒前
老武完成签到,获得积分10
10秒前
wanci应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
122319应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
tuanheqi应助科研通管家采纳,获得80
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
12秒前
不可以哦完成签到 ,获得积分10
12秒前
etrh完成签到 ,获得积分10
12秒前
真实的瑾瑜完成签到 ,获得积分10
12秒前
鲤鱼寻菡完成签到 ,获得积分10
13秒前
14秒前
17秒前
忽远忽近的她完成签到 ,获得积分10
18秒前
疯狂的凡梦完成签到 ,获得积分10
18秒前
羊咩咩完成签到,获得积分10
18秒前
19秒前
泡面完成签到 ,获得积分10
19秒前
ZJX应助mobei采纳,获得10
20秒前
123456发布了新的文献求助10
20秒前
JY完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290747
求助须知:如何正确求助?哪些是违规求助? 4442048
关于积分的说明 13829071
捐赠科研通 4324837
什么是DOI,文献DOI怎么找? 2373882
邀请新用户注册赠送积分活动 1369248
关于科研通互助平台的介绍 1333323