Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangbing123完成签到 ,获得积分10
1秒前
chen完成签到,获得积分10
1秒前
lucky完成签到 ,获得积分10
2秒前
mary完成签到,获得积分10
2秒前
炙热一凤应助HNDuan采纳,获得60
2秒前
2秒前
CodeCraft应助浩洁采纳,获得10
2秒前
3秒前
没有神的过往完成签到,获得积分10
3秒前
泡椒发布了新的文献求助30
3秒前
3秒前
3秒前
万事顺意完成签到,获得积分10
4秒前
zzz应助medlive2020采纳,获得10
4秒前
4秒前
华仔应助繁荣的念双采纳,获得10
4秒前
忧伤的不凡完成签到,获得积分10
5秒前
zhengzhao完成签到,获得积分10
5秒前
小不58完成签到,获得积分10
5秒前
充电宝应助aging00采纳,获得10
5秒前
6秒前
杨blinh发布了新的文献求助10
6秒前
共享精神应助yu_xie采纳,获得10
6秒前
kenny完成签到,获得积分10
6秒前
昏睡的以寒完成签到,获得积分10
7秒前
问雁完成签到,获得积分10
7秒前
清爽秋白完成签到,获得积分10
7秒前
过眼云烟完成签到,获得积分10
8秒前
帅帅厅发布了新的文献求助10
8秒前
Pursue完成签到,获得积分10
8秒前
小龙发布了新的文献求助30
8秒前
海鸥别叫了完成签到 ,获得积分10
8秒前
阳光的水壶完成签到,获得积分10
9秒前
小向完成签到,获得积分10
9秒前
大气修杰发布了新的文献求助30
9秒前
10秒前
ml完成签到 ,获得积分10
10秒前
听话的寄灵完成签到,获得积分10
10秒前
丰富的复天完成签到,获得积分10
11秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5106849
求助须知:如何正确求助?哪些是违规求助? 4316415
关于积分的说明 13446806
捐赠科研通 4145387
什么是DOI,文献DOI怎么找? 2271656
邀请新用户注册赠送积分活动 1274036
关于科研通互助平台的介绍 1211811