亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
北宅一枝花完成签到,获得积分20
10秒前
小黑超努力完成签到 ,获得积分10
14秒前
16秒前
22秒前
小可乐完成签到,获得积分10
40秒前
可爱的函函应助陶醉巧凡采纳,获得10
45秒前
47秒前
科研通AI6应助科研通管家采纳,获得10
47秒前
1分钟前
1分钟前
科研菜鸡发布了新的文献求助10
1分钟前
1分钟前
1分钟前
LHC发布了新的文献求助10
1分钟前
Lan完成签到 ,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
2分钟前
科研菜鸡完成签到,获得积分10
2分钟前
时有落花至完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
环走鱼尾纹完成签到 ,获得积分10
2分钟前
热情的觅云完成签到 ,获得积分10
2分钟前
田様应助冷傲的银耳汤采纳,获得10
3分钟前
蔚蓝绽放发布了新的文献求助20
3分钟前
Drwang完成签到,获得积分10
3分钟前
路漫漫其修远兮完成签到 ,获得积分10
3分钟前
3分钟前
张杰列夫完成签到 ,获得积分10
3分钟前
合适鲂完成签到,获得积分10
3分钟前
Breeze完成签到 ,获得积分10
4分钟前
蔚蓝绽放完成签到,获得积分10
4分钟前
Criminology34举报万事可乐求助涉嫌违规
4分钟前
科研通AI6.1应助一见喜采纳,获得10
4分钟前
4分钟前
Future完成签到 ,获得积分10
4分钟前
一见喜发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739520
求助须知:如何正确求助?哪些是违规求助? 5386817
关于积分的说明 15339751
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624069
邀请新用户注册赠送积分活动 1572769
关于科研通互助平台的介绍 1529575