Incorporating artificial intelligence in urology: Supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy

列线图 生化复发 医学 前列腺切除术 前列腺癌 泌尿科 算法 四分位间距 断点群集区域 机器学习 内科学 癌症 数学 计算机科学 受体
作者
Yu Guang Tan,Hao Sen Andrew Fang,Kheng Sit Lim,Farhan Khalid,Kenneth Chen,Henry Sun Sien Ho,John Shyi Peng Yuen,Hong Hong Huang,Kae Jack Tay
出处
期刊:The Prostate [Wiley]
卷期号:82 (3): 298-305 被引量:20
标识
DOI:10.1002/pros.24272
摘要

After radical prostatectomy (RP), one-third of patients will experience biochemical recurrence (BCR), which is associated with subsequent metastasis and cancer-specific mortality. We employed machine learning (ML) algorithms to predict BCR after RP, and compare them with traditional regression models and nomograms.Utilizing a prospective Uro-oncology registry, 18 clinicopathological parameters of 1130 consecutive patients who underwent RP (2009-2018) were recorded, yielding over 20,000 data points for analysis. The data set was split into a 70:30 ratio for training and validation. Three ML models: Naïve Bayes (NB), random forest (RF), and support vector machine (SVM) were studied, and compared with traditional regression models and nomograms (Kattan, CAPSURE, John Hopkins [JHH]) to predict BCR at 1, 3, and 5 years.Over a median follow-up of 70.0 months, 176 (15.6%) developed BCR, at a median time of 16.0 months (interquartile range [IQR]: 11.0-26.0). Multivariate analyses demonstrated strongest association of BCR with prostate-specific antigen (PSA) (p: 0.015), positive surgical margins (p < 0.001), extraprostatic extension (p: 0.002), seminal vesicle invasion (p: 0.004), and grade group (p < 0.001). The 3 ML models demonstrated good prediction of BCR at 1, 3, and 5 years, with the area under curves (AUC) of NB at 0.894, 0.876, and 0.894, RF at 0.846, 0.875, and 0.888, and SVM at 0.835, 0.850, and 0.855, respectively. All models demonstrated (1) robust accuracy (>0.82), (2) good calibration with minimal overfitting, (3) longitudinal consistency across the three time points, and (4) inter-model validity. The ML models were comparable to traditional regression analyses (AUC: 0.797, 0.848, and 0.862) and outperformed the three nomograms: Kattan (AUC: 0.815, 0.798, and 0.799), JHH (AUC: 0.820, 0.757, and 0.750) and CAPSURE nomograms (AUC: 0.706, 0.720, and 0.749) (p < 0.001).Supervised ML algorithms can deliver accurate performances and outperform nomograms in predicting BCR after RP. This may facilitate tailored care provisions by identifying high-risk patients who will benefit from multimodal therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
silence完成签到 ,获得积分10
2秒前
是真的宇航员啊完成签到,获得积分10
5秒前
mochalv123完成签到 ,获得积分10
28秒前
1分钟前
合适醉蝶完成签到 ,获得积分10
1分钟前
寒冷的月亮完成签到 ,获得积分10
1分钟前
俊逸的香萱完成签到 ,获得积分10
1分钟前
drtrapezus发布了新的文献求助10
1分钟前
林利芳完成签到 ,获得积分0
1分钟前
wayne完成签到 ,获得积分10
1分钟前
泡泡茶壶o完成签到 ,获得积分10
1分钟前
1分钟前
坚定的小蘑菇完成签到 ,获得积分10
1分钟前
Alex发布了新的文献求助10
1分钟前
凡华完成签到 ,获得积分10
2分钟前
千空完成签到 ,获得积分10
2分钟前
Richard_Li完成签到,获得积分10
2分钟前
游01完成签到 ,获得积分10
2分钟前
drtrapezus完成签到,获得积分10
2分钟前
小小完成签到 ,获得积分10
2分钟前
又又完成签到,获得积分0
2分钟前
笨笨忘幽完成签到,获得积分0
3分钟前
CLTTT完成签到,获得积分0
3分钟前
CadoreK完成签到 ,获得积分10
3分钟前
afterglow完成签到 ,获得积分10
3分钟前
Dr-Luo完成签到 ,获得积分10
3分钟前
mark33442完成签到,获得积分10
3分钟前
shanyuyulai完成签到 ,获得积分10
3分钟前
Yuan完成签到 ,获得积分10
3分钟前
大个应助白华苍松采纳,获得10
4分钟前
高天雨完成签到 ,获得积分10
4分钟前
缥缈的觅风完成签到 ,获得积分10
4分钟前
jiaxvguo完成签到 ,获得积分10
5分钟前
5分钟前
蓝色花生豆完成签到,获得积分0
5分钟前
5分钟前
5分钟前
江三村完成签到 ,获得积分0
5分钟前
外向的芒果完成签到 ,获得积分10
5分钟前
从容猫咪发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689383
捐赠科研通 4591837
什么是DOI,文献DOI怎么找? 2519371
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118