Assortativity provides a narrow margin for enhanced cooperation on multilayer networks

分类 学位分布 相互依存的网络 匹配(统计) 无标度网络 边距(机器学习) 物理 公共物品游戏 利用 学位(音乐) 合作博弈论 复杂网络 统计物理学 博弈论 计算机科学 微观经济学 公共物品 经济 统计 机器学习 数学 计算机安全 万维网 声学
作者
Maja Duh,Marko Gosak,Mitja Slavinec,Matjaž Perc
出处
期刊:New Journal of Physics [IOP Publishing]
卷期号:21 (12): 123016-123016 被引量:22
标识
DOI:10.1088/1367-2630/ab5cb2
摘要

Abstract Research at the interface of statistical physics, evolutionary game theory, and network science has in the past two decades significantly improved our understanding of cooperation in structured populations. We know that networks with broad-scale degree distributions favor the emergence of robust cooperative clusters, and that temporal networks might preclude defectors to exploit cooperators, provided the later can sever their bad ties soon enough. In recent years, however, research has shifted from single and isolated networks to multilayer and interdependent networks. This has revealed new paths to cooperation, but also opened up new questions that remain to be answered. We here study how assortativity in connections between two different network layers affects public cooperation. The connections between the two layers determine to what extent payoffs in one network influence the payoffs in the other network. We show that assortative linking between the layers—connecting hubs of one network with the hubs in the other—does enhance cooperation under adverse conditions, but does so with a relatively modest margin in comparison to random matching or disassortative matching between the two layers. We also confirm previous results, showing that the bias in the payoffs in terms of contributions from different layers can help public cooperation to prevail, and in fact more so than the assortativity between layers. These results are robust to variations in the network structure and average degree, and they can be explained well by the distribution of strategies across the networks and by the suppression of individual success levels that is due to the payoff interdependence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lkl77完成签到,获得积分10
1秒前
2秒前
在水一方应助林夏采纳,获得10
2秒前
Jasper应助明天过后采纳,获得10
2秒前
jeffery111发布了新的文献求助10
2秒前
神龙尊者完成签到,获得积分10
2秒前
anlikek发布了新的文献求助10
2秒前
2秒前
Sifan发布了新的文献求助10
3秒前
道友且慢发布了新的文献求助20
4秒前
4秒前
飞机云完成签到,获得积分10
4秒前
cocolu应助柳香芦采纳,获得10
5秒前
5秒前
5秒前
周周发布了新的文献求助30
6秒前
开放刺猬发布了新的文献求助10
6秒前
慕青应助小九的呀采纳,获得10
6秒前
桐桐应助虚幻的香彤采纳,获得10
6秒前
天真的保温杯完成签到,获得积分10
7秒前
娜娜发布了新的文献求助10
8秒前
Tom发布了新的文献求助10
8秒前
淡然平灵发布了新的文献求助10
8秒前
傲娇的凡旋应助mzzzz采纳,获得10
8秒前
8秒前
9秒前
9秒前
bill完成签到,获得积分10
9秒前
chinzz应助jeffery111采纳,获得10
10秒前
原象发布了新的文献求助20
11秒前
传奇3应助橘又青采纳,获得20
11秒前
no_one完成签到,获得积分10
11秒前
卡卡西西西完成签到,获得积分10
12秒前
12秒前
寒生妄发布了新的文献求助10
12秒前
13秒前
天真的乐巧完成签到,获得积分10
13秒前
情怀应助anlikek采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384