Scan2BIM-NET: Deep Learning Method for Segmentation of Point Clouds for Scan-to-BIM

点云 分割 深度学习 计算机科学 人工智能 过程(计算) 建筑信息建模 人工神经网络 天花板(云) 云计算 计算机视觉 卷积神经网络 模式识别(心理学) 数据挖掘 点(几何) 工程类 结构工程 几何学 相容性(地球化学) 化学工程 操作系统 数学
作者
Yeritza Perez-Perez,Mani Golparvar‐Fard,Khaled El‐Rayes
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:68
标识
DOI:10.1061/(asce)co.1943-7862.0002132
摘要

The architecture, engineering, and construction (AEC) industry perform thousands of scans each year. The majority of these point clouds are used for generating three-dimensional (3D) models—a process formally known as scan to building information modeling (Scan-to-BIM)—that represent the current conditions of a construction scene. Although point cloud data provide the scene’s geometric information, its use presents several challenges that make the process of generating a 3D model from point cloud data time-consuming, labor-intensive, and error-prone. In order to address the mentioned challenges, this paper presents a new end-to-end deep learning method, named Scan2BIM-NET, for semantically segmenting the structural, architectural, and mechanical components present in point cloud data. It classifies beam, ceiling, column, floor, pipe, and wall elements using three main networks: two convolutional neural network (CNN) and one recurrent neural network (RNN). The method was trained and tested using 83 rooms from point cloud data representing real-world industrial and commercial buildings. The process returned an average accuracy of 86.13%, and the beam, ceiling, column, floor, pipe, and wall categories obtained an accuracy of 82.47%, 92.60%, 59.31%, 98.71%, 82.79%, and 84.46%, respectively. The experimental results showed that deep learning improves the accuracy of semantic segmentation of architectural, structural, and mechanical components. This new method has the potential of being a tool during the Scan-to-BIM process, especially for semantically segmenting underceiling areas where mechanical components are close to structural elements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅秋双发布了新的文献求助10
1秒前
优秀丸子完成签到,获得积分10
1秒前
小明应助FrankJeffison采纳,获得10
1秒前
2秒前
小二郎应助12采纳,获得10
3秒前
ziyue发布了新的文献求助10
3秒前
kevindm发布了新的文献求助10
3秒前
4秒前
人工智能小配方完成签到,获得积分10
6秒前
小五完成签到 ,获得积分20
7秒前
云无意发布了新的文献求助10
7秒前
黑豆子完成签到,获得积分10
8秒前
9秒前
Paul111完成签到,获得积分10
10秒前
jzt12138发布了新的文献求助10
11秒前
11秒前
青青闭上眼睛完成签到,获得积分10
13秒前
13秒前
英姑应助fufu采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
大豆子完成签到,获得积分10
17秒前
浮游应助青青闭上眼睛采纳,获得10
17秒前
17秒前
王贤平发布了新的文献求助10
17秒前
18秒前
20秒前
万能图书馆应助清脆安南采纳,获得10
20秒前
天真苑睐完成签到,获得积分10
21秒前
Leo完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
Azure完成签到,获得积分10
22秒前
Akim应助美好斓采纳,获得10
25秒前
遇见发布了新的文献求助10
25秒前
小豆子完成签到,获得积分10
27秒前
Jane完成签到 ,获得积分10
29秒前
30秒前
30秒前
32秒前
TL111发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109