Scan2BIM-NET: Deep Learning Method for Segmentation of Point Clouds for Scan-to-BIM

点云 分割 深度学习 计算机科学 人工智能 过程(计算) 建筑信息建模 人工神经网络 天花板(云) 云计算 计算机视觉 卷积神经网络 模式识别(心理学) 数据挖掘 点(几何) 工程类 结构工程 几何学 相容性(地球化学) 化学工程 操作系统 数学
作者
Yeritza Perez-Perez,Mani Golparvar‐Fard,Khaled El‐Rayes
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:68
标识
DOI:10.1061/(asce)co.1943-7862.0002132
摘要

The architecture, engineering, and construction (AEC) industry perform thousands of scans each year. The majority of these point clouds are used for generating three-dimensional (3D) models—a process formally known as scan to building information modeling (Scan-to-BIM)—that represent the current conditions of a construction scene. Although point cloud data provide the scene’s geometric information, its use presents several challenges that make the process of generating a 3D model from point cloud data time-consuming, labor-intensive, and error-prone. In order to address the mentioned challenges, this paper presents a new end-to-end deep learning method, named Scan2BIM-NET, for semantically segmenting the structural, architectural, and mechanical components present in point cloud data. It classifies beam, ceiling, column, floor, pipe, and wall elements using three main networks: two convolutional neural network (CNN) and one recurrent neural network (RNN). The method was trained and tested using 83 rooms from point cloud data representing real-world industrial and commercial buildings. The process returned an average accuracy of 86.13%, and the beam, ceiling, column, floor, pipe, and wall categories obtained an accuracy of 82.47%, 92.60%, 59.31%, 98.71%, 82.79%, and 84.46%, respectively. The experimental results showed that deep learning improves the accuracy of semantic segmentation of architectural, structural, and mechanical components. This new method has the potential of being a tool during the Scan-to-BIM process, especially for semantically segmenting underceiling areas where mechanical components are close to structural elements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助LG采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
CodeCraft应助阿乾采纳,获得10
2秒前
大模型应助找文献呢采纳,获得10
3秒前
像个小蛤蟆完成签到 ,获得积分10
4秒前
5秒前
太阳狮子完成签到,获得积分10
5秒前
5秒前
在逃野猪完成签到,获得积分10
6秒前
李汀发布了新的文献求助10
7秒前
ZXJ发布了新的文献求助10
7秒前
上官若男应助ljy采纳,获得10
7秒前
8秒前
Ethereal发布了新的文献求助10
8秒前
HX发布了新的文献求助10
9秒前
华仔应助乌苏苏采纳,获得10
9秒前
万能图书馆应助肉桂卷采纳,获得30
11秒前
小二郎应助jinger采纳,获得10
12秒前
123发布了新的文献求助20
12秒前
云鹏完成签到,获得积分10
12秒前
13秒前
我勒个大豆这么好用完成签到,获得积分10
13秒前
kakaa发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
火烧云发布了新的文献求助10
17秒前
852应助蒸馏水采纳,获得10
17秒前
阿乾发布了新的文献求助10
18秒前
大个应助chai采纳,获得10
18秒前
19秒前
阳光的以莲关注了科研通微信公众号
19秒前
Dr.Wang完成签到,获得积分20
19秒前
HeatherMI发布了新的文献求助10
19秒前
研友_VZG7GZ应助靓丽安萱采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624