Scan2BIM-NET: Deep Learning Method for Segmentation of Point Clouds for Scan-to-BIM

点云 分割 深度学习 计算机科学 人工智能 过程(计算) 建筑信息建模 人工神经网络 天花板(云) 云计算 计算机视觉 卷积神经网络 模式识别(心理学) 数据挖掘 点(几何) 工程类 结构工程 几何学 相容性(地球化学) 化学工程 操作系统 数学
作者
Yeritza Perez-Perez,Mani Golparvar‐Fard,Khaled El‐Rayes
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:68
标识
DOI:10.1061/(asce)co.1943-7862.0002132
摘要

The architecture, engineering, and construction (AEC) industry perform thousands of scans each year. The majority of these point clouds are used for generating three-dimensional (3D) models—a process formally known as scan to building information modeling (Scan-to-BIM)—that represent the current conditions of a construction scene. Although point cloud data provide the scene’s geometric information, its use presents several challenges that make the process of generating a 3D model from point cloud data time-consuming, labor-intensive, and error-prone. In order to address the mentioned challenges, this paper presents a new end-to-end deep learning method, named Scan2BIM-NET, for semantically segmenting the structural, architectural, and mechanical components present in point cloud data. It classifies beam, ceiling, column, floor, pipe, and wall elements using three main networks: two convolutional neural network (CNN) and one recurrent neural network (RNN). The method was trained and tested using 83 rooms from point cloud data representing real-world industrial and commercial buildings. The process returned an average accuracy of 86.13%, and the beam, ceiling, column, floor, pipe, and wall categories obtained an accuracy of 82.47%, 92.60%, 59.31%, 98.71%, 82.79%, and 84.46%, respectively. The experimental results showed that deep learning improves the accuracy of semantic segmentation of architectural, structural, and mechanical components. This new method has the potential of being a tool during the Scan-to-BIM process, especially for semantically segmenting underceiling areas where mechanical components are close to structural elements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助佳佳528采纳,获得10
刚刚
就当野人算了完成签到,获得积分10
1秒前
无花果应助WZ采纳,获得10
1秒前
柳絮发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
sys549应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
观潮应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
是晓宇啊应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
HJJHJH应助科研通管家采纳,获得10
7秒前
mm应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
HJJHJH应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
Yapi发布了新的文献求助10
7秒前
危机的阁应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425