Scan2BIM-NET: Deep Learning Method for Segmentation of Point Clouds for Scan-to-BIM

点云 分割 深度学习 计算机科学 人工智能 过程(计算) 建筑信息建模 人工神经网络 天花板(云) 云计算 计算机视觉 卷积神经网络 模式识别(心理学) 数据挖掘 点(几何) 工程类 结构工程 几何学 操作系统 化学工程 数学 相容性(地球化学)
作者
Yeritza Perez-Perez,Mani Golparvar‐Fard,Khaled El‐Rayes
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:147 (9) 被引量:68
标识
DOI:10.1061/(asce)co.1943-7862.0002132
摘要

The architecture, engineering, and construction (AEC) industry perform thousands of scans each year. The majority of these point clouds are used for generating three-dimensional (3D) models—a process formally known as scan to building information modeling (Scan-to-BIM)—that represent the current conditions of a construction scene. Although point cloud data provide the scene’s geometric information, its use presents several challenges that make the process of generating a 3D model from point cloud data time-consuming, labor-intensive, and error-prone. In order to address the mentioned challenges, this paper presents a new end-to-end deep learning method, named Scan2BIM-NET, for semantically segmenting the structural, architectural, and mechanical components present in point cloud data. It classifies beam, ceiling, column, floor, pipe, and wall elements using three main networks: two convolutional neural network (CNN) and one recurrent neural network (RNN). The method was trained and tested using 83 rooms from point cloud data representing real-world industrial and commercial buildings. The process returned an average accuracy of 86.13%, and the beam, ceiling, column, floor, pipe, and wall categories obtained an accuracy of 82.47%, 92.60%, 59.31%, 98.71%, 82.79%, and 84.46%, respectively. The experimental results showed that deep learning improves the accuracy of semantic segmentation of architectural, structural, and mechanical components. This new method has the potential of being a tool during the Scan-to-BIM process, especially for semantically segmenting underceiling areas where mechanical components are close to structural elements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
4秒前
5秒前
立仔发布了新的文献求助10
6秒前
ShengzhangLiu发布了新的文献求助10
6秒前
6秒前
SYLH应助科学采纳,获得10
6秒前
7秒前
Salt发布了新的文献求助10
8秒前
JamesPei应助科研眼镜蛇采纳,获得10
9秒前
听安完成签到,获得积分10
10秒前
77关闭了77文献求助
10秒前
充电宝应助lzr采纳,获得10
11秒前
苗苗发布了新的文献求助10
11秒前
称心凡霜完成签到,获得积分10
16秒前
17秒前
一颗石榴完成签到,获得积分10
17秒前
温离完成签到,获得积分10
18秒前
ZZ发布了新的文献求助10
21秒前
玉昆完成签到 ,获得积分10
22秒前
今后应助吴玉婷采纳,获得30
22秒前
立仔完成签到,获得积分10
23秒前
Zoe_Zhang完成签到 ,获得积分10
24秒前
25秒前
重要的秋尽完成签到,获得积分10
26秒前
111发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
lzr完成签到,获得积分10
29秒前
29秒前
30秒前
包佳梁完成签到,获得积分10
32秒前
如意含雁关注了科研通微信公众号
32秒前
寒江孤影完成签到,获得积分10
34秒前
ddd123发布了新的文献求助10
34秒前
36秒前
苗苗完成签到,获得积分10
41秒前
Atec发布了新的文献求助10
41秒前
李健的小迷弟应助无名采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975458
求助须知:如何正确求助?哪些是违规求助? 3519866
关于积分的说明 11199996
捐赠科研通 3256213
什么是DOI,文献DOI怎么找? 1798133
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305